Minimal Value

Algebra Level 3

Given positive reals a , b , c a,b,c and a b + b c + c a 3 ab+bc+ca\ge 3 . The minimum value of a b + c + b c + a + c a + b \frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b}} is m n \frac{m}{\sqrt{n}} , where m , n m,n are square-free integers. Find the value of m n mn .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Reynan Henry
Dec 23, 2016

Since ( a + b + c ) 2 3 ( a b + b c + c a ) 9 (a+b+c)^2\ge 3(ab+bc+ca)\ge 9 hence a + b + c 3 a+b+c\ge3 .

We will now use Holder Inequality

( c y c a b + c ) 2 ( c y c a ( b + c ) ) ( a + b + c ) 3 = ( a + b + c ) ( a + b + c ) 2 3 3 ( a b + b c + c a ) \left( \sum_{cyc}\frac{a}{\sqrt{b+c}} \right)^2\left( \sum_{cyc}a(b+c) \right) \ge (a+b+c)^3= (a+b+c)(a+b+c)^2\ge 3\cdot 3(ab+bc+ca) on the left side ( c y c a b + c ) 2 ( c y c a ( b + c ) ) = ( c y c a b + c ) 2 2 ( a b + b c + c a ) \left( \sum_{cyc}\frac{a}{\sqrt{b+c}} \right)^2\left( \sum_{cyc}a(b+c) \right)=\left( \sum_{cyc}\frac{a}{\sqrt{b+c}} \right)^2\cdot 2 \cdot (ab+bc+ca) so the term a b + b c + c a ab+bc+ca cancels out

( c y c a b + c ) 2 9 2 ( c y c a b + c ) 3 2 \left( \sum_{cyc}\frac{a}{\sqrt{b+c}} \right)^2\ge \frac{9}{2}\Leftrightarrow \left( \sum_{cyc}\frac{a}{\sqrt{b+c}} \right)\ge \frac{3}{\sqrt{2}} so m n = 6 mn=6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...