Minimal value

Algebra Level 5

Given an integer n 2 \displaystyle n \ge 2 .The minimal value of x 1 5 x 2 + x 3 + + x n + x 2 5 x 1 + x 3 + + x n + + x n 5 x 1 + x n 1 \displaystyle \frac{x_{1}^{5}}{x_{2}+{x_{3}}+…+x_{n}} + \frac{x_{2}^{5}}{x_{1}+x_{3}+…+x_{n}} +…+ \frac{x_{n}^{5}}{x_{1}+…x_{n-1}} ,for positive real numbers x 1 , x 2 , , x n x_{1},x_{2},…,x_{n} subject to the condition that sum of their squares is 1 , can be expressed as α n ( n β ) \displaystyle \frac{\alpha}{n(n-\beta)} where α \displaystyle \alpha and β \displaystyle \beta are positive integers then what is the value of α + β \displaystyle \alpha+\beta


The answer is 2.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mathh Mathh
Jul 19, 2014

In this full proof I will use the fact that

x 1 x 2 + x 1 x 3 + + x 1 x n + x 1 x 2 + x 2 x 3 + + x 2 x n + + x 1 x n + x 2 x n + + x n 1 x n \displaystyle x_1x_2+x_1x_3+\cdots +x_1x_n +x_1x_2+x_2x_3+\cdots+x_2x_n+\cdots+x_1x_n+x_2x_n+\cdots+x_{n-1}x_n = ( x 1 + x 2 + + x n ) 2 ( x 1 2 + x 2 2 + + x n 2 ) \displaystyle = (x_1+x_2+\cdots+x_n)^2-(x_1^2+x_2^2+\cdots+x_n^2) = ( x 1 + x 2 + + x n ) 2 1 \displaystyle =(x_1+x_2+\cdots+x_n)^2-1

Here's the proof:

x 1 5 x 2 + x 3 + + x n + x 2 5 x 1 + x 3 + + x n + + x n 5 x 1 + x 2 + + x n 1 \displaystyle \frac{x_1^5}{x_2+x_3+\cdots +x_n}+\frac{x_2^5}{x_1+x_3+\cdots+x_n}+\cdots+\frac{x_n^5}{x_1+x_2+\cdots+x_{n-1}} = x 1 6 x 1 x 2 + x 1 x 3 + + x 1 x n + x 2 6 x 1 x 2 + x 2 x 3 + + x 2 x n + + x n 6 x 1 x n + x 2 x n + + x n 1 x n \displaystyle = \frac{x_1^6}{x_1x_2+x_1x_3+\cdots +x_1x_n}+\frac{x_2^6}{x_1x_2+x_2x_3+\cdots+x_2x_n}+\cdots+\frac{x_n^6}{x_1x_n+x_2x_n+\cdots+x_{n-1}x_n} H o ¨ lder ( x 1 2 + x 2 2 + + x n 2 ) 3 n ( x 1 x 2 + x 1 x 3 + + x 1 x n + x 1 x 2 + x 2 x 3 + + x 2 x n + + x 1 x n + x 2 x n + + x n 1 x n ) \displaystyle \stackrel{\text{Hölder}}\ge \frac{(x_1^2+x_2^2+\cdots+x_n^2)^3}{n(x_1x_2+x_1x_3+\cdots +x_1x_n +x_1x_2+x_2x_3+\cdots+x_2x_n+\cdots+x_1x_n+x_2x_n+\cdots+x_{n-1}x_n)} = 1 n ( x 1 x 2 + x 1 x 3 + + x 1 x n + x 1 x 2 + x 2 x 3 + + x 2 x n + + x 1 x n + x 2 x n + + x n 1 x n ) \displaystyle = \frac{1}{n(x_1x_2+x_1x_3+\cdots +x_1x_n +x_1x_2+x_2x_3+\cdots+x_2x_n+\cdots+x_1x_n+x_2x_n+\cdots+x_{n-1}x_n)} = 1 n ( ( x 1 + x 2 + + x n ) 2 1 ) \displaystyle =\frac{1}{n((x_1+x_2+\cdots+x_n)^2-1)} = 1 n ( x 1 + x 2 + + x n ) 2 n \displaystyle =\frac{1}{n(x_1+x_2+\cdots+x_n)^2-n} Cauchy-Schwarz 1 n 2 ( x 1 2 + x 2 2 + + x n 2 ) n \displaystyle \stackrel{\text{Cauchy-Schwarz}}\ge \frac{1}{n^2(x_1^2+x_2^2+\cdots+x_n^2)-n} = 1 n ( n 1 ) \displaystyle =\frac{1}{n(n-1)}

Since equality can be reached when x 1 = x 2 = = x n = n n x_1=x_2=\cdots=x_n=\frac{\sqrt{n}}{n} , this is the lower bound of the original expression.

Which means α = β = 1 α + β = 2 \alpha=\beta=1\implies \alpha+\beta =\boxed{2} .

thats the way i did it

huge wolverine - 6 years, 10 months ago

There's lots of ways to formulate a proof for this... I basically introduced S = sum of all variables and an ordering for reasons of symmetry, applied Chebyshev, then AM-HM (that's how the n-1 factor popped up) and then Chebyshev again twice, introducing the constraint in my very last step. This made it easy to generalize the problem to a constraint like 'sum of k-th powers equal U' and instead of 5, any power P in each numerator for which P - 1 = 0 mod k.

T B - 6 years, 10 months ago
Aaaaa Bbbbb
Jul 18, 2014

Use the case of n=2 and n=3 in combination with the expression: α n × ( n β ) \frac{\alpha}{n \times (n-\beta)} It is easy to get: α = β = 1 α + β = 2 \alpha=\beta=1 \Rightarrow \alpha + \beta = \boxed{2}

I wanted to add another solution, but I can't see how. I was using the android app. Maybe @Calvin Lin or @Peter Taylor could help me.

Solution: Define S = x 1 + x 1 + + x n S= x_1 + x_1 + \cdots + x_n and F F to be the expression in the problem. By the Cauchy-Schwarz inequality, we get:

( i = 1 n x i 5 S x i ) ( i = 1 n ( S x i ) ) ( x i 2.5 ) \displaystyle ( \sum_{i=1}^n \frac{x_i^5}{S-x_i} ) ( \sum_{i=1}^n (S-x_i)) \geq ( \sum x_i^{2.5} )

F ( n 1 ) S ( x i 2.5 ) \Rightarrow F (n-1) S \geq ( \sum x_i^{2.5} )

F ( x i 2.5 ) ( n 1 ) S \Rightarrow F \geq \frac {( \sum x_i^{2.5} )}{(n-1) S} .

Now using Chebyshev's inequality we get:

( x i 2.5 ) S x i 2 n = 1 n \Rightarrow \frac {( \sum x_i^{2.5} )}{ S} \geq \frac{ \sum x_i^2}{n} = \frac {1}{n} .

Using these we get the result α + β = 2. \alpha + \beta = 2. \square

A Brilliant Member - 6 years, 11 months ago

u can take the case n=2 and then assign cos x and sin x as the two values . taking x as 45 degrees and applying it in the equation you get a value which on inspection would lead to the answer

huge wolverine - 6 years, 10 months ago
Nikola Djuric
Jun 19, 2015

Notist that (x1+x2+..x(n-1)) / (n-1) <√( (x1²+x2²+..x(n-1)²) / (n-1) )
so x1+x2+...+x(n-1) <√(n-1) √(1-x(n)²) A-H inequality for others also, so whole expression is >= 1/√(n-1) * sum(Xi^5)/√(1-Xi²) previous equality is achieved when x1=x2=...=x(n)=x so from sum(xi²)=1 we get nx²=1,x=1/√n,so =1/√(n-1) *n (1/√n^5)/√(1-1/n)=1/n(n-1) so a=1,b=1,a+b=2

Rahul Saxena
Mar 26, 2015

I myself used the case of n=2 and n=3 and got the correct answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...