Minimalism is a decision - (1) - A different problem

Algebra Level 2

x 2 5 y + 1 = x y 1 = 0 2 x 4 5 y 3 = \large x^2 - 5y + 1 = x - \sqrt y - 1 = 0 \implies \sqrt[3]{2x^4 - 5y} = \square

What is \square ?

-2 -1 0 -3 1 2 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given { x 2 5 y + 1 = 0 . . . ( 1 ) x y 1 = 0 . . . ( 2 ) \begin{cases} x^2-5y + 1 = 0 & ...(1) \\ x - \sqrt y - 1 = 0 & ...(2) \end{cases} .

From ( 2 ) : (2):

x y 1 = 0 Rearranging y = x 1 Squaring both sides y = x 2 2 x + 1 \begin{aligned} x - \sqrt y - 1 & = 0 & \small \color{#3D99F6} \text{Rearranging} \\ \sqrt y & = x-1 & \small \color{#3D99F6} \text{Squaring both sides} \\ y & = x^2 - 2x + 1 \end{aligned}

From ( 1 ) : (1):

x 5 y + 1 = 0 Substituting y = x 2 2 x + 1 x 5 ( x 2 2 x + 1 ) + 1 = 0 4 x 2 + 10 x 4 = 0 Dividing both sides by 2 2 x 2 5 x + 2 = 0 ( 2 x 1 ) ( x 2 ) = 0 \begin{aligned} x - 5{\color{#3D99F6}y} + 1 & = 0 & \small \color{#3D99F6} \text{Substituting } y = x^2 - 2x + 1 \\ x - 5{\color{#3D99F6}(x^2-2x+1)} + 1 & = 0 \\ - 4x^2 +10x - 4 & = 0 & \small \color{#3D99F6} \text{Dividing both sides by }-2 \\ 2x^2 - 5x + 2 & = 0 \\ (2x-1)(x-2) & = 0 \end{aligned}

Then we have { x = 1 2 y = x 1 = 1 2 No real solution. x = 2 y = x 1 = 1 y = 1 \begin{cases} x = \frac 12 & \implies \sqrt y = x - 1 = -\frac 12 & \small \color{#D61F06}\text{No real solution.} \\ x = 2 & \implies \sqrt y = x - 1 = 1 & \implies y = 1 \end{cases}

Therefore, 2 x 4 5 y 3 = 2 ( 16 ) 5 3 = 27 3 = 3 \sqrt[3]{2x^4-5y} = \sqrt[3]{2(16)-5} = \sqrt[3]{27} = \boxed 3 .

Tom Engelsman
Feb 2, 2019

By multiplying the second expression by -5 and adding it to the first, we obtain:

x 2 5 x + 6 = 0 ( x 2 ) ( x 3 ) = 0 x = 2 , 3 x^2 - 5x + 6 = 0 \Rightarrow (x-2)(x-3) = 0 \Rightarrow x = 2, 3

and substituting these values into either equation yields the ordered-pairs: ( x , y ) = ( 2 , 1 ) ; ( 3 , 4 ) . (x,y) = (2,1); (3,4). A final calculation of ( 2 x 4 5 y ) 1 / 3 (2x^4 - 5y)^{1/3} gives:

( 2 ( 2 ) 4 5 ( 1 ) ) 1 / 3 = ( 27 ) 1 / 3 = 3 (2(2)^4 - 5(1))^{1/3} = (27)^{1/3} = 3

( 2 ( 3 ) 4 5 ( 4 ) ) 1 / 3 = ( 142 ) 1 / 3 = 5.216 (2(3)^4 - 5(4))^{1/3} = (142)^{1/3} = 5.216

Hence, the answer is 3 . \boxed{3}.

I actually made a mistake but it doesn't affect the results so it's fine.

Thành Đạt Lê - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...