Minimario's trigonometric expression

Algebra Level 3

( cos 1 2 ) × ( cos 2 4 ) × ( cos 4 8 ) × ( cos 9 6 ) = a b , (\cos 12^\circ) \times (\cos 24^\circ) \times (\cos 48^\circ) \times ( \cos96^\circ) = - \frac{a}{b},

where a a and b b are positive coprime integers. What is the value of a + b a+b ?

This problem is posed by Minimario M.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Felipe Guima
Aug 11, 2013

First, see that: cos x = sin 2 x 2 sin x \cos x = \dfrac{\sin 2x}{2\sin x}

Now, we can rewrite the expression as:

sin 24 ° 2 sin 12 ° × sin 48 ° 2 sin 24 ° × sin 96 º 2 sin 48 ° × sin 192 ° 2 sin 96 ° \dfrac{\sin 24°}{2\sin 12°}\times\dfrac{\sin 48°}{2\sin 24°}\times\dfrac{\sin 96º}{2\sin 48°}\times\dfrac{\sin192°}{2\sin96°} = sin 192 ° 16 sin 12 º = sin 12 ° 16 sin 12 ° = 1 16 =\dfrac{\sin 192°}{16\sin 12º}=\dfrac{-\sin 12°}{16\sin 12°}=\frac{-1}{16} Then, a = 1 a=1 and b = 16 a + b = 17 b=16\ \therefore a+b=17

Moderator note:

Very nice!

wow,fantastic

M. Ulin Nuha - 7 years, 9 months ago

(cos12)(cos24)(cos48)(cos96) = -0.0625 (-a/b = -0.0625)(-) a/b = 6/100 + 25/10000 a/b = 600/10000 + 25/10000 a/b = 625/10000 a/b = 1/16

  • a + b = 1 + 16 = 17

Jet Arca - 7 years, 10 months ago

Log in to reply

How did you get 0.0625 -0.0625 ? If you used a calculator for this, how can you be sure that this is the exact answer?

Nhat Le - 7 years, 10 months ago

Log in to reply

Yes, it seems like a calculator was used, which misses the point.

Alexander Borisov - 7 years, 10 months ago
Guiping Xie
Aug 11, 2013

Call the above S S .

We notice that those degrees are increasing by double so we decide to use the sin double angle formula which is

sin 2 θ = 2 sin θ cos θ \sin 2\theta = 2\sin\theta\cos\theta or 1 2 sin 2 θ = sin θ cos θ \frac{1}{2}\sin 2\theta = \sin\theta\cos\theta

Multiply S S by sin 1 2 \sin12^\circ to get

S sin 1 2 = sin 1 2 × cos 1 2 × cos 2 4 × cos 4 8 × cos 9 6 S\sin 12^\circ = \sin12^\circ \times \cos12^\circ \times \cos24^\circ \times \cos48^\circ \times \cos96^\circ

S sin 1 2 = 1 2 sin 2 4 × cos 2 4 × cos 4 8 × cos 9 6 S\sin 12^\circ = \frac{1}{2}\sin24^\circ \times \cos24^\circ \times \cos48^\circ \times \cos96^\circ

S sin 1 2 = 1 4 sin 4 8 × cos 4 8 × cos 9 6 S\sin 12^\circ = \frac{1}{4}\sin48^\circ \times \cos48^\circ \times \cos96^\circ

S sin 1 2 = 1 8 sin 9 6 × cos 9 6 S\sin 12^\circ = \frac{1}{8}\sin96^\circ \times \cos96^\circ

S sin 1 2 = 1 16 sin 19 2 S\sin 12^\circ = \frac{1}{16}\sin192^\circ

sin 1 2 = sin 19 2 \sin12^\circ = -\sin192^\circ

S = 1 16 S = -\frac{1}{16}

a + b = 17 a+b=17

Alfredo Saracho
Aug 12, 2013

We know that cos ( x ± y ) = cos x cos y sin x sin y \cos (x\pm y)=\cos x \cos y \mp \sin x \sin y Adding both identities and rearranging terms we can get cos x cos y = 1 2 [ cos ( x + y ) + cos ( x y ) ] \cos x \cos y = \frac{1}{2} \left[ \cos (x+y)+ \cos (x-y) \right] Now, let's call P = cos 12 ° cos 24 ° cos 48 ° cos 96 ° P=\cos 12° \cdot \cos 24° \cdot \cos 48° \cdot \cos 96° , but we use this identity pairing up the 12 with the 48, and 24 with the 96. We obtain P = 1 2 ( cos 60 ° + cos 36 ° ) × 1 2 ( cos 120 ° + c o s 72 ° ) P=\frac{1}{2} \left( \cos 60° + \cos 36° \right) \times \frac{1}{2} \left( \cos 120° + cos 72° \right) We are implicitly using cos x = cos ( x ) \cos x = \cos(-x) . We can simplify P P a bit further, since we know cos 60 ° = 1 2 \cos 60° = \frac{1}{2} and cos 120 ° = 1 2 \cos 120°=-\frac{1}{2} , that is P = 1 4 ( 1 2 + cos 36 ° ) ( 1 2 + cos 72 ° ) P=\frac{1}{4}\left( \frac{1}{2} + \cos 36° \right) \left( -\frac{1}{2} + \cos 72°\right) All we need to do now, is to calculate the cos 36 ° \cos 36° and cos 72 ° \cos 72° , which is easy. I'll leave that detail until the end. For now, i'll use that cos 36 ° = 1 + 5 4 \cos 36° = \frac{1+\sqrt{5}}{4} and cos 72 ° = 1 + 5 4 \cos 72° = \frac{1+\sqrt{5}}{4} . Substituting this into the expression for P P we get P = 1 4 ( 1 2 + 1 + 5 4 ) ( 1 2 + 1 + 5 4 ) P=\frac{1}{4}\left( \frac{1}{2} + \frac{1+\sqrt{5}}{4} \right) \left( -\frac{1}{2} + \frac{1+\sqrt{5}}{4}\right) Now, doing a bit of algebra we get P = 1 4 ( 3 + 5 4 ) ( 3 + 5 4 ) P = \frac{1}{4} \left( \frac{3+\sqrt{5}}{4} \right) \left( \frac{-3+\sqrt{5}}{4} \right) which leads to P = 1 4 3 ( 9 + 5 ) P=\frac{1}{4^3}\left(-9 + 5\right) so that P = 1 16 \boxed{P=-\frac{1}{16}} That way, the answer for this problema is a + b = 17 \boxed{a+b = 17} .





Consider an isosceles triangle O A B OAB with O A = O B OA = OB and A O B = 36 ° \angle AOB = 36° . Let be C C a point in segment O B OB such tha A C AC is the \angle bisector. It is easy to see A O C = C A B = 36 ° and C B A = A C B = 72 ° \angle AOC = \angle CAB = 36°\quad \text{and} \quad \angle CBA = \angle ACB = 72° which proves that triangles O A B OAB and A B C ABC are similar. Without losing generality, let O A = O B = 1 OA=OB=1 and A B = A C = O C = x AB=AC=OC=x , because triangle O A C OAC is isosceles too. By this similarity, B C A B = A B O A \frac{BC}{AB}=\frac{AB}{OA} which is 1 x x = x 1 \frac{1-x}{x}=\frac{x}{1} Solving for x x and considering it must be positive, the only solution posible is x = 1 + 5 2 x=\frac{-1+\sqrt{5}}{2} . Let it be A D AD the height of triangle O A B OAB , its obvious that D D is the midpoint of C B CB . Then, O D = x + 1 x 2 = 1 + x 2 = 1 + 5 4 OD= x + \frac{1-x}{2}=\frac{1+x}{2}=\frac{1+\sqrt{5}}{4} But notice that cos 36 ° = O D O A = O D 1 \cos36° = \frac{OD}{OA}=\frac{OD}{1} , that way we get cos 36 ° = 1 + 5 4 \cos 36° = \frac{1+\sqrt{5}}{4} Furthermore, since cos 2 x = 2 cos 2 x 1 \cos 2x = 2\cos^2 x - 1 doing some algebra we observe that cos 72 ° = 1 + 5 4 . \cos 72° = \frac{-1+\sqrt{5}}{4}.

Moderator note:

Very nice indeed!

Wow, this was amazing. Really well done! :)

Ivan Sekovanić - 7 years, 10 months ago
Ivan Sekovanić
Aug 11, 2013

To begin with, note that

  • sin 2 θ = 2 sin θ cos θ \sin2\theta=2\sin\theta \cos\theta

  • sin ( 18 0 + θ ) = sin θ \sin(180^{\circ}+\theta)=-\sin\theta

Now, let us multiply the entire expression with 1 2 sin 1 2 2 sin 1 2 \frac{1}{2\sin12^{\circ}} \cdot 2\sin12^{\circ} , which is essentially 1 1 , meaning that it will cause no change to the expression. Therefore, we have

1 2 sin 1 2 ( 2 sin 1 2 ) ( cos 1 2 ) ( cos 2 4 ) ( cos 4 8 ) ( cos 9 6 ) \frac{1}{2\sin12^{\circ}} \cdot (2\sin12^{\circ}) \cdot (\cos12^{\circ}) \cdot (\cos24^{\circ}) \cdot (\cos48^{\circ}) \cdot (\cos96^{\circ})

Now, since 2 sin 1 2 cos 1 2 = sin 2 4 2\sin12^{\circ}\cos12^{\circ}=\sin24^{\circ} , we may substitute that in the expression, leaving us with

1 2 sin 1 2 ( sin 2 4 ) ( cos 2 4 ) ( cos 4 8 ) ( cos 9 6 ) \frac{1}{2\sin12^{\circ}} \cdot (\sin24^{\circ}) \cdot (\cos24^{\circ}) \cdot (\cos48^{\circ}) \cdot (\cos96^{\circ})

Now, let us multiply the expression with 1 2 2 \frac{1}{2}\cdot2 , which is again 1 1 and does not change anything. Thus

1 4 sin 1 2 ( 2 sin 2 4 ) ( cos 2 4 ) ( cos 4 8 ) ( cos 9 6 ) \frac{1}{4\sin12^{\circ}} \cdot (2\sin24^{\circ}) \cdot (\cos24^{\circ}) \cdot (\cos48^{\circ}) \cdot (\cos96^{\circ})

... and again, seeing that 2 sin 2 4 cos 2 4 = sin 4 8 2\sin24^{\circ}\cos24^{\circ}=\sin48^{\circ} , we may substitute it to the expression, leaving us with

1 4 sin 1 2 ( sin 4 8 ) ( cos 4 8 ) ( cos 9 6 ) \frac{1}{4\sin12^{\circ}} \cdot (\sin48^{\circ}) \cdot (\cos48^{\circ}) \cdot (\cos96^{\circ})

At this point, we repeat the second step (multiplying with 1 2 2 \frac{1}{2}\cdot2 ) 2 2 more times, so that we get

1 4 sin 1 2 ( sin 4 8 ) ( cos 4 8 ) ( cos 9 6 ) = \frac{1}{4\sin12^{\circ}} \cdot (\sin48^{\circ}) \cdot (\cos48^{\circ}) \cdot (\cos96^{\circ})=

= 1 8 sin 1 2 ( sin 9 6 ) ( cos 9 6 ) = 1 16 sin 1 2 ( sin 19 2 ) =\frac{1}{8\sin12^{\circ}} \cdot (\sin96^{\circ}) \cdot (\cos96^{\circ})= \frac{1}{16\sin12^{\circ}} \cdot (\sin192^{\circ}) .

Considering sin 19 2 = sin ( 18 0 + 1 2 = sin 1 2 \sin192^{\circ}=\sin(180^{\circ}+12^{\circ}=-\sin12^{\circ} , we conclude that

1 16 sin 1 2 ( sin 19 2 ) = 1 16 sin 1 2 ( sin 1 2 ) = 1 16 \frac{1}{16\sin12^{\circ}} \cdot (\sin192^{\circ})=\frac{1}{16\sin12^{\circ}} \cdot (-\sin12^{\circ})=-\frac{1}{16}

From the text of the problem we can see that a b = 1 16 -\frac{a}{b}=-\frac{1}{16} , so a = 1 a=1 and b = 16 b=16 , meaning a + b = 17 a+b=17 .

Moderator note:

Nicely done!

good one

Ojas Dhiman - 7 years, 10 months ago

Log in to reply

Thanks!

Ivan Sekovanić - 7 years, 10 months ago
Taehyung Kim
Aug 11, 2013

By double angle formula, we have sin 2 4 = 2 sin 1 2 cos 1 2 cos 1 2 = sin 2 4 2 sin 1 2 \sin 24^\circ = 2\sin 12^\circ \cos 12^\circ \implies \cos 12^\circ =\frac{ \sin 24^\circ}{2\sin 12^\circ} sin 4 8 = 2 sin 2 4 cos 2 4 cos 2 4 = sin 4 8 2 sin 2 4 \sin 48^\circ = 2\sin 24^\circ \cos 24^\circ \implies \cos 24^\circ =\frac{ \sin 48^\circ}{2\sin 24^\circ} sin 9 6 = 2 sin 4 8 cos 4 8 cos 4 8 = sin 9 6 2 sin 4 8 \sin 96^\circ = 2\sin 48^\circ \cos 48^\circ \implies \cos 48^\circ =\frac{ \sin 96^\circ}{2\sin 48^\circ} sin 19 2 = 2 sin 9 6 cos 9 6 cos 9 6 = sin 19 2 2 sin 9 6 \sin 192^\circ = 2\sin 96^\circ \cos 96^\circ \implies \cos 96^\circ =\frac{ \sin 192^\circ}{2\sin 96^\circ} So multiplying these 4 gives sin 19 2 16 sin 1 2 = sin 1 2 16 sin 1 2 = 1 16 a + b = 17. \frac{\sin 192^\circ}{16\sin 12^\circ} = \frac{-\sin 12^\circ}{16\sin 12^\circ} = - \frac 1{16}\implies a + b = 17.

multiply them on calculator: = - 0.0625= - 1/16 ....... so a+b=17

Mohammed Al-husban - 7 years, 10 months ago

Log in to reply

Well.. you can do that but that really isn't the point of the problem.

Taehyung Kim - 7 years, 10 months ago
Tushar Gautam
Aug 12, 2013

We first need to convert all there terms into sin so we 1st multiply ans divide by 2sin (12)

2 sin (12)×cos(12)×cos (24)×cos (48)×cos (96) /2 sin (12) If we see 1st two terms they are of form 2sinx cos x which is equal to sin (2x) we get

Sin (24)×cos (24)×cos (48)×cos (96)/2sin (12) Now we need to multiply and divide by 2

2sin (24)×cos (24)×cos (48)×cos (96)/4 sin (12)

Sin (48)×cos (48)×cos (96)/4sin (12)

Again by multiplying and dividing by 2 at lat we get

Sin (192)/16sin (12)

We know sin (180+x)=-sin (x)

So we write -sin (12)/16sin (12)

We get -1/16 so a+b=17

For these series of form Cos (a)×cos (2a)×cos (4a)×.............×cos (2^(n-1) a)

We get result sin (2^n a)/2^n sin (a)

Nhat Le
Aug 11, 2013

We have ( cos 1 2 ) × ( cos 2 4 ) × ( cos 4 8 ) × ( cos 9 6 ) = ( cos 1 2 ) × ( cos 4 8 ) × ( cos 2 4 ) × ( cos 9 6 ) (\cos12^\circ ) \times (\cos24^\circ) \times (\cos48^\circ) \times (\cos96^\circ) = (\cos12^\circ) \times (\cos48^\circ) \times (\cos24^\circ) \times (\cos96^\circ)

= cos 6 0 + cos 3 6 2 × cos 12 0 + cos 7 2 2 = \frac{\cos60^\circ + \cos36^\circ}{2} \times \frac{\cos120^\circ + \cos72^\circ}{2} = 1 4 ( 1 2 + cos 3 6 ) ( 1 2 + cos 7 2 ) = \frac{1}{4} \left( \frac{1}{2} + \cos36^\circ \right) \left(\frac{-1}{2} + \cos72^\circ \right) = 1 4 ( 1 4 1 2 cos 3 6 + 1 2 cos 7 2 + cos 3 6 cos 7 2 ) = \frac{1}{4} \left( \frac{-1}{4} -\frac{1}{2}\cos36^\circ +\frac{1}{2}\cos72^\circ +\cos36^\circ\cos72^\circ \right) = 1 4 ( 1 4 1 2 cos 3 6 + 1 2 cos 7 2 + cos 10 8 + cos 3 6 2 ) = \frac{1}{4} \left( \frac{-1}{4} -\frac{1}{2}\cos36^\circ +\frac{1}{2}\cos72^\circ +\frac{\cos108^\circ+\cos36^\circ}{2} \right) = 1 4 ( 1 4 1 2 cos 3 6 + 1 2 cos 7 2 + cos 7 2 + cos 3 6 2 ) = \frac{1}{4} \left( \frac{-1}{4} -\frac{1}{2}\cos36^\circ +\frac{1}{2}\cos72^\circ +\frac{-\cos72^\circ+\cos36^\circ}{2} \right) = 1 4 ( 1 4 ) = \frac{1}{4} \left( \frac{-1}{4} \right) = 1 16 = \frac{-1}{16}

Thus a = 1 , b = 16 a=1, b=16 and a + b = 17 a+b=17

pls can u explain 2nd step properly

ojas dhiman - 7 years, 10 months ago

Log in to reply

I used the identity cos A cos B = cos ( A + B ) + cos ( A B ) 2 \cos A \cos B = \frac{\cos(A+B)+\cos(A-B)}{2} . This is the same formula used to get from line 4 to line 5.

Nhat Le - 7 years, 10 months ago

Multiply two sides of the equation with s i n 1 2 sin\ 12^{∘} we have:

s i n 1 2 sin\ 12^{∘} x c o s 1 2 cos\ 12^{∘} x c o s 2 4 cos\ 24^{∘} x c o s 4 8 cos\ 48^{∘} x c o s 9 6 = a b cos\ 96^{∘} = - \frac{a}{b} x s i n 1 2 sin\ 12^{∘} < = > 1 16 <=> \frac{1}{16} x s i n 19 2 = a b sin\ 192^{∘} = - \frac{a}{b} x s i n 1 2 sin\ 12^{∘}

< = > 1 16 <=> - \frac{1}{16} x s i n 1 2 = a b sin\ 12^{∘} = - \frac{a}{b} x s i n 1 2 sin\ 12^{∘}

< = > 1 16 = a b <=> \frac{1}{16} = \frac{a}{b}

= > a + b = 17 => a + b = 17

So we have 17 as the result.

Ravi Prakash Roy
Aug 17, 2013

Multiplying and dividing by cos 72,,we get cos 12 * cos 48* cos 72 cos 24 cos 96/cos 72. IN THE NEXT STEP,,we can write it as cos12 cos(60-12) cos(60+12) cos 24 cos 96/cos 72. we can simplify it as cos(3X12)cos 24 cos 96/cos 72. =cos 36 cos 24 cos 96/cos 72 cos (60-36) cos 36 cos(60+36)/cos 72 =cos(3X36)/cos72 cos 108/cos72 -cos18/sin 18 -cot18 =-13/4. THE FORMULA IS COS(60-A) COSA COS(60+A) = COS 3A SORRY FRIENDS FOR NOT WRITTING MATHEMATICALLY...

Abhishek Pushp
Aug 17, 2013

cos 12. cos 24. cos 48. cos 96= [1 / (2 sin 12) ] ( 2. sin 12. cos 12 ). cos 24. cos 48. cos 96 = [1/ (2 sin 12 )] ( sin 24 ) cos 24. cos 48. cos 96 = [1 / (4 sin 12 )] ( 2. sin 24. cos 24 ). cos 48. cos 96 = [ 1 /(4 sin 12 )] ( sin 48 ).cos 48. cos 96 = [ 1 / (8 sin 12 )].( 2. sin 48. cos 48 ). cos 96 = [1 / (8 sin 12 )].( sin 96 ). cos 96 = [ 1 / (16 sin 12)]. ( 2. sin 96. cos 96 ) = [1 / (16 sin 12)]. sin 192 = [1 / (16 sin 12 )]. sin [ 180 + 12 ] = [1 / (16 sin 12 )].( - sin 12 )= ( - 1 / 16 ).=>1+16=17

Aditya Rungta
Aug 17, 2013

We will use :

[ 1 ] 2* sin x. cos x = sin 2x

[ 2 ] sin ( 180 + x ) = - sin x. ......................................…

= cos 12. cos 24. cos 48. cos 96

= ( 1 / 2*sin 12 ) ( 2. sin 12. cos 12 ). cos 24. cos 48. cos 96

= ( 1/ 2*sin 12 ) ( sin 24 ) cos 24. cos 48. cos 96

= ( 1 / 4*sin 12 ) ( 2. sin 24. cos 24 ). cos 48. cos 96

= ( 1 /4*sin 12 ) ( sin 48 ).cos 48. cos 96

= ( 1 / 8*sin 12 ).( 2. sin 48. cos 48 ). cos 96

= ( 1 / 8*sin 12 ).( sin 96 ). cos 96

= ( 1 / 16*sin 12 ). ( 2. sin 96. cos 96 )

= ( 1 / 16* sin 12 ). sin 192

= ( 1 / 16*sin 12 ). sin [ 180 + 12 ]

= ( 1 / 16*sin 12 ).( - sin 12 )

= ( - 1 / 16 ). ............................Ans.

Maharnab Mitra
Aug 14, 2013

The given sum can be simplified as cos θ \cos \theta cos 2 θ \cos2 \theta cos 4 θ \cos4 \theta cos 8 θ \cos8 \theta where θ \theta = 1 2 o 12^{o} .

Now, multiplying the numerator and denominator by 2 sin θ \sin \theta we get [ sin 2 θ \sin2 \theta cos 2 θ \cos2 \theta cos 4 θ \cos4 \theta cos 8 θ \cos8 \theta ] / 2 sin θ \sin \theta .

[using sin 2 θ \sin2 \theta = 2 sin θ \sin \theta cos θ \cos \theta ]

Multiplying the numerator and denominator by 2 we get sin 4 θ \sin4 \theta cos 4 θ \cos4 \theta cos 8 θ \cos8 \theta ] / 4 sin θ \sin \theta .

Continuing like this, we get sin 16 θ \sin16 \theta / 16 sin θ \sin \theta

16 θ \theta =16x 1 2 o 12^{o} = 18 0 o 180^{o} + 1 2 o 12^{o}

Hence, sin 16 θ \sin16 \theta = - sin θ \sin \theta

Thus the fraction becomes - 1 16 \frac{1}{16}

Therefore, a+b=17

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...