Minimise this!

Geometry Level 3

Let A , B A,B and C C denote the interior angles of a non-degenerate triangle, then what is the least value of sin 2 A 2 + sin 2 B 2 + sin 2 C 2 ? { \sin }^{ 2 }\dfrac { A }{ 2 } +{ \sin }^{ 2 }\dfrac { B }{ 2 } +{ \sin }^{ 2 }\dfrac { C }{ 2 }?

0 0 3 2 \frac32 3 4 \frac34 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Feb 22, 2020

Let's use LaGrange Multipliers here: we are interested in minimizing f ( A , B , C ) = sin 2 A 2 + sin 2 B 2 + sin 2 C 2 f(A,B,C) = \sin^{2}\frac{A}{2} + \sin^{2}\frac{B}{2} + \sin^{2}\frac{C}{2} subject to g ( A , B , C ) = A + B + C = π . g(A,B,C) = A + B + C = \pi. Computing g r a d ( f ) = λ g r a d ( g ) grad(f) = \lambda \cdot grad(g) gives:

2 sin A 2 1 2 cos A 2 = 1 2 sin ( A ) = λ ; 2\sin \frac{A}{2} \cdot \frac{1}{2} \cos \frac{A}{2} = \frac{1}{2} \sin(A) = \lambda;

2 sin B 2 1 2 cos B 2 = 1 2 sin ( B ) = λ ; 2\sin \frac{B}{2} \cdot \frac{1}{2} \cos \frac{B}{2} = \frac{1}{2} \sin(B) = \lambda;

2 sin C 2 1 2 cos C 2 = 1 2 sin ( C ) = λ ; 2\sin \frac{C}{2} \cdot \frac{1}{2} \cos \frac{C}{2} = \frac{1}{2} \sin(C) = \lambda;

Or sin ( A ) = sin ( B ) = sin ( C ) A = B = C = π 3 \sin(A) = \sin(B) = \sin(C) \Rightarrow A = B = C = \frac{\pi}{3} is our critical point. Taking the Hessian matrix of f f now yields:

[ 1 2 cos ( A ) 0 0 0 1 2 cos ( B ) 0 0 0 1 2 cos ( C ) ] \begin{bmatrix} \frac{1}{2} \cos(A) & 0 & 0 \\ 0 & \frac{1}{2} \cos(B) & 0 \\ 0 & 0 & \frac{1}{2} \cos(C) \end{bmatrix}

and evaluating at the critical point A = B = C = π 3 A = B = C = \frac{\pi}{3} gives:

[ 1 4 0 0 0 1 4 0 0 0 1 4 ] = 1 4 I 3 x 3 \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} = \frac{1}{4} I_{3x3}

which is positive-definite, thus a global minimum. Ultimately, f ( π 3 , π 3 , π 3 ) = 3 sin 2 ( π 6 ) = 3 4 . f(\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3}) = 3 \cdot \sin^{2} (\frac{\pi}{6}) = \boxed{\frac{3}{4}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...