Minimization with a Polynomial Parameter

Algebra Level 3

Let P ( x ) P(x) be a real polynomial with degree at most 9 such that P ( 2 n ) = F 2 n + 1 P(2n) = F_{2n+1} for 1 n 9 1 \leq n \leq 9 . What is the value of P ( 0 ) P(0) that minimizes P ( 0 ) 2 + P ( 20 ) 2 P(0)^2 + P(20)^2 ?


Notation: F n F_n denotes the n th n^\text{th} Fibonacci number , where F 0 = 0 , F 1 = 1 F_0 = 0, F_1 = 1 and F n = F n 1 + F n 2 F_n = F_{n-1} + F_{n-2} for n = 2 , 3 , 4 , n=2,3,4,\ldots .


The answer is 5429.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 16, 2018

If we define p j ( X ) = 0 k 9 k j ( X 2 k ) 0 j 9 p_j(X) \; = \; \prod_{0 \le k \le 9 \atop k \neq j}(X - 2k) \hspace{2cm} 0 \le j \le 9 then each polynomial p j ( X ) p_j(X) has degree 9 9 and p j ( 2 j ) = 0 k 9 k j 2 ( j k ) = ( 1 ) 9 j 2 9 j ! ( 9 j ) ! p j ( 20 ) = 0 k 9 k j 2 ( 10 k ) = 2 9 10 ! 10 j \begin{aligned} p_j(2j) & = \; \prod_{0 \le k \le 9 \atop k \neq j}2(j-k) \; = \; (-1)^{9-j} 2^9 j! (9-j)! \\ p_j(20) & = \; \prod_{0 \le k \le 9 \atop k \neq j} 2(10-k) \; = \; 2^9 \frac{10!}{10-j} \end{aligned} and so the polynomial P ( X ) P(X) is given by Lagrange interpolation: P ( X ) = j = 0 9 α j p j ( 2 j ) p j ( X ) P(X) \; = \; \sum_{j=0}^9 \frac{\alpha_j}{p_j(2j)}p_j(X) where α j = { F 2 j + 1 1 j 9 P ( 0 ) j = 0 \alpha_j \; = \; \left\{ \begin{array}{lll} F_{2j+1} & \hspace{1cm} & 1 \le j \le 9 \\ P(0) & & j = 0 \end{array} \right. Thus P ( 20 ) = j = 0 9 α j p j ( 2 j ) p j ( 20 ) = j = 0 9 ( 1 ) j + 1 ( 10 j ) α j = 10858 P ( 0 ) P(20) \; = \; \sum_{j=0}^9 \frac{\alpha_j}{p_j(2j)} p_j(20) \; = \; \sum_{j=0}^9 (-1)^{j+1}\binom{10}{j}\alpha_j \; = \; 10858 - P(0) Thus P ( 0 ) 2 + P ( 20 ) 2 = P ( 0 ) 2 + ( P ( 0 ) 10858 ) 2 = 2 ( P ( 0 ) 5429 ) 2 + 2 × 542 9 2 P(0)^2 + P(20)^2 \; = \; P(0)^2 + \big(P(0) - 10858\big)^2 \; = \; 2\big(P(0) - 5429\big)^2 + 2\times5429^2 which is minimized when P ( 0 ) = 5429 P(0) = \boxed{5429} .


To prove the final formula identifying P ( 20 ) P(20) ...

Suppose that u u is either of the roots of the equation X 2 X 1 = 0 X^2 - X - 1 = 0 . Then u = 1 u 2 ( 1 ) n u n = ( 1 u 2 ) n = k = 0 n ( n k ) ( 1 ) k u 2 k ( 1 ) n u n + 1 = k = 0 n ( n k ) ( 1 ) k u 2 k + 1 \begin{aligned} - u & = \; 1 - u^2 \\ (-1)^n u^n & = \; \left(1 - u^2\right)^n \; = \; \sum_{k=0}^n {n \choose k}(-1)^ku^{2k} \\ (-1)^nu^{n+1} & = \; \sum_{k=0}^n {n \choose k}(-1)^k u^{2k+1} \end{aligned} If p > q p > q are the two roots of X 2 X 1 = 0 X^2 - X - 1 = 0 then we know that 5 F n = p n q n \sqrt{5}F_n = p^n -q^n for all n 0 n \ge 0 . Thus means that ( 1 ) n F n + 1 = k = 0 n ( 1 ) k ( n k ) F 2 k + 1 (-1)^n F_{n+1} \; = \; \sum_{k=0}^n (-1)^k{n \choose k}F_{2k+1} From this we deduce that j = 1 n ( 1 ) j + 1 ( n + 1 j ) F 2 j + 1 = ( 1 ) n [ j = 0 n + 1 ( 1 ) n + 1 + j ( n + 1 j ) F 2 j + 1 ( 1 ) n + 1 F 2 n + 1 ] = ( 1 ) n [ F n + 2 ( 1 ) n + 1 F 2 n + 3 ] \sum_{j=1}^n (-1)^{j+1}{n+1 \choose j}F_{2j+1} \; = \; (-1)^n\left[\sum_{j=0}^{n+1} (-1)^{n+1+j}{n+1 \choose j}F_{2j+1} - (-1)^{n+1} - F_{2n+1}\right] \; = \; (-1)^n\left[F_{n+2} -(-1)^{n+1} - F_{2n+3}\right] and hence P ( 20 ) = F 21 F 11 + 1 P ( 0 ) = 10858 P ( 0 ) P(20) \; = \; F_{21} - F_{11} + 1 - P(0) \; = \; 10858 - P(0)

Alan Yan
Jan 14, 2018

EDIT: This solution is incorrect. In particular, the value written for P ( 0 ) P(0) is incorrect.

Using the identity k 0 ( n k k ) = F n + 1 \sum_{k \geq 0} \binom{n-k}{k} = F_{n+1} observe that there is a constant c c such that P ( x ) = ( x 0 ) + ( x 1 1 ) + . . . + ( x 9 9 ) + c ( x 2 ) ( x 4 ) . . . ( x 18 ) . P(x) = \binom{x}{0} + \binom{x-1}{1} + ... + \binom{x - 9}{9} + c(x - 2)(x-4)...(x-18). Then, P ( 20 ) = F 21 1 + c 18 ! ! P ( 0 ) = 1 c 18 ! ! . \begin{aligned} P(20) & = F_{21} - 1 + c 18!! \\ P(0) & = 1 - c 18!!. \end{aligned} So, P ( 20 ) = F 21 P ( 0 ) P(20) = F_{21} - P(0) . Hence, P ( 0 ) 2 + P ( 20 ) 2 P(0)^2 + P(20)^2 is minimized when P ( 0 ) = F 21 / 2 = 5473 P(0) = F_{21}/2 = \boxed{5473} .

P(x) is only defined 2 ≤ n ≤ 18. in the question. P(0) and P(20) are not defined. I.e. p(0) = k0 - c18!! and p(20) = k20 + c18!! k0 , k20 are unknown.

Ash Robson - 1 year, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...