Minimize (2,1,0) with constraint (2,1,1)

Algebra Level 3

Given that x x , y y , and z z are positive real numbers satisfying x y z ( x + y + z ) = 1 xyz(x+y+z)=1 , minimize ( x + y ) ( y + z ) ( z + x ) (x+y)(y+z)(z+x) .

Enter your answer to five decimal places.


The answer is 3.50953.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rohit Kumar
Jun 20, 2016

let x + y = a , y + z = b , x + z = c x + y = a , y + z = b , x + z = c and s = a + b + c 2 s = \large{\frac{a + b + c}{2}}

then the given constraint becomes ( s a ) ( s b ) ( s c ) s = 1 (s-a)(s-b)(s-c)s = 1

a , b , c a,b,c can be treated as the sides of triangle.

let A , B , C A,B,C be the angles opposite to sides a , b , c a,b,c .

1 2 a b sin C = 1 {\frac{1}{2}} ab \sin C = 1

1 2 b c sin A = 1 {\frac{1}{2}} bc \sin A = 1

1 2 a c sin B = 1 {\frac{1}{2}} ac \sin B = 1

multiplying them all and we get :

1 8 ( a b c ) 2 sin A sin B sin C = 1 {\frac{1}{8}} (abc)^2 \sin A \sin B \sin C = 1

by A.M - G.M and Jensen's inequality

sin A sin B sin C 3 sin A + sin B + sin C 3 sin A + B + C 3 \sqrt[3]{\sin A \sin B \sin C} \leq \frac{\sin A + \sin B + \sin C}{3} \leq \sin \frac{A + B + C}{3}

So, sin A sin B sin C 3 3 8 \sin A \sin B \sin C \leq \large\frac{3\sqrt{3}}{8}

Thus , ( a b c ) 2 64 3 3 (abc)^2 \geq \frac{64}{3\sqrt{3}} or a b c 3.50953 abc \geq \boxed{3.50953}

also, equality occcurs at x = y = z = 1 3 4 x = y = z = \frac{1}{\sqrt[4]{3}}

Beautiful.

Samuel Li - 3 years, 6 months ago
Sayeed Tasnim
Jun 15, 2016

By AM-GM inequality, x + y + z 3 x y z 3 x + y + z 3 x y z 3 , \frac{x+y+z}{3} \geq \sqrt[3]{xyz} \Rightarrow x+y+z \geq 3 \sqrt[3]{xyz}, so 1 = x y z ( x + y + z ) x y z 3 x y z 3 x y z ( 1 3 ) 3 / 4 1 = xyz(x+y+z) \geq xyz \cdot 3 \sqrt[3]{xyz} \Rightarrow xyz \geq \left(\frac{1}{3}\right)^{3/4} .

Expanding ( x + y ) ( y + z ) ( z + x ) = 2 x y z + cyc x 2 y (x+y)(y+z)(z+x) = 2xyz + \displaystyle\sum_{\textrm{cyc}} x^2 y . Applying AM-GM on cyc x 2 y \displaystyle\sum_{\textrm{cyc}} x^2 y , cyc x 2 y 6 x y z cyc x 2 y 6 x y z . \frac{\displaystyle\sum_{\textrm{cyc}} x^2 y}{6} \geq xyz \Rightarrow \sum_{\textrm{cyc}} x^2 y \geq 6xyz. Therefore, we have ( x + y ) ( y + z ) ( z + x ) = 2 x y z + cyc x 2 y 8 x y z . (x+y)(y+z)(z+x) = 2xyz + \sum_{\textrm{cyc}} x^2 y \geq 8xyz. Finally, ( x + y ) ( y + z ) ( z + x ) 8 x y z 8 ( 1 3 ) 3 / 4 (x+y)(y+z)(z+x) \geq 8xyz \geq 8 \left(\frac{1}{3}\right)^{3/4} where equality holds in the inequalities if and only if x = y = z = ( 1 3 ) 1 / 4 x=y=z = \left(\frac{1}{3}\right)^{1/4} .

You switched the inequality for x y z xyz . It is that x y z 1 3 3 4 xyz \leq {\frac{1}{3}}^{\frac{3}{4}} .

Shourya Pandey - 4 years, 4 months ago
P C
Jun 17, 2016

The minimum can be found by these inequalites: ( x + y ) ( y + z ) ( z + x ) 8 9 ( x + y + z ) ( x y + y z + x z ) (x+y)(y+z)(z+x)\geq\frac{8}{9}(x+y+z)(xy+yz+xz) , ( x y + y z + x z ) 2 3 x y z ( x + y + z ) (xy+yz+xz)^2\geq 3xyz(x+y+z) and ( x + y + z ) 2 3 ( x y + y z + x z ) (x+y+z)^2\geq 3(xy+yz+xz)

Can you show how to derive these inequalities and the full solution associated with using them?

Sayeed Tasnim - 4 years, 12 months ago
Ruofeng Liu
Dec 7, 2019

x y z ( x + y + z ) = 1 x y z ( 3 x y z 3 ) 1 x y z 1 27 4 \displaystyle xyz(x+y+z)=1 \implies xyz(3\sqrt[3]{xyz}) \le 1 \implies xyz \le \frac{1}{\sqrt[4]{27}}

( x + y ) ( y + z ) ( z + x ) = ( x + y + z ) ( x y + y z + x z ) x y z \displaystyle (x+y)(y+z)(z+x)=(x+y+z)(xy+yz+xz)-xyz

( x + y + z ) ( x y + y z + x z ) 3 ( x + y + z ) x 2 y 2 z 2 3 = 3 ( x + y + z ) x y z x y z 3 = 3 x y z 3 3 3 4 \displaystyle (x+y+z)(xy+yz+xz) \ge 3(x+y+z)\sqrt[3]{x^2y^2z^2} = \frac{3(x+y+z)xyz}{\sqrt[3]{xyz}} = \frac{3}{\sqrt[3]{xyz}} \ge 3\sqrt[4]{3}

( x + y ) ( y + z ) ( z + x ) 3 3 4 1 27 4 = 8 3 4 3 \displaystyle \implies (x+y)(y+z)(z+x) \ge 3\sqrt[4]{3}-\frac{1}{\sqrt[4]{27}}=\frac{8\sqrt[4]{3}}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...