Given that x , y , and z are positive real numbers satisfying x y z ( x + y + z ) = 1 , minimize ( x + y ) ( y + z ) ( z + x ) .
Enter your answer to five decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Beautiful.
By AM-GM inequality, 3 x + y + z ≥ 3 x y z ⇒ x + y + z ≥ 3 3 x y z , so 1 = x y z ( x + y + z ) ≥ x y z ⋅ 3 3 x y z ⇒ x y z ≥ ( 3 1 ) 3 / 4 .
Expanding ( x + y ) ( y + z ) ( z + x ) = 2 x y z + cyc ∑ x 2 y . Applying AM-GM on cyc ∑ x 2 y , 6 cyc ∑ x 2 y ≥ x y z ⇒ cyc ∑ x 2 y ≥ 6 x y z . Therefore, we have ( x + y ) ( y + z ) ( z + x ) = 2 x y z + cyc ∑ x 2 y ≥ 8 x y z . Finally, ( x + y ) ( y + z ) ( z + x ) ≥ 8 x y z ≥ 8 ( 3 1 ) 3 / 4 where equality holds in the inequalities if and only if x = y = z = ( 3 1 ) 1 / 4 .
You switched the inequality for x y z . It is that x y z ≤ 3 1 4 3 .
The minimum can be found by these inequalites: ( x + y ) ( y + z ) ( z + x ) ≥ 9 8 ( x + y + z ) ( x y + y z + x z ) , ( x y + y z + x z ) 2 ≥ 3 x y z ( x + y + z ) and ( x + y + z ) 2 ≥ 3 ( x y + y z + x z )
Can you show how to derive these inequalities and the full solution associated with using them?
x y z ( x + y + z ) = 1 ⟹ x y z ( 3 3 x y z ) ≤ 1 ⟹ x y z ≤ 4 2 7 1
( x + y ) ( y + z ) ( z + x ) = ( x + y + z ) ( x y + y z + x z ) − x y z
( x + y + z ) ( x y + y z + x z ) ≥ 3 ( x + y + z ) 3 x 2 y 2 z 2 = 3 x y z 3 ( x + y + z ) x y z = 3 x y z 3 ≥ 3 4 3
⟹ ( x + y ) ( y + z ) ( z + x ) ≥ 3 4 3 − 4 2 7 1 = 3 8 4 3
Problem Loading...
Note Loading...
Set Loading...
let x + y = a , y + z = b , x + z = c and s = 2 a + b + c
then the given constraint becomes ( s − a ) ( s − b ) ( s − c ) s = 1
a , b , c can be treated as the sides of triangle.
let A , B , C be the angles opposite to sides a , b , c .
2 1 a b sin C = 1
2 1 b c sin A = 1
2 1 a c sin B = 1
multiplying them all and we get :
8 1 ( a b c ) 2 sin A sin B sin C = 1
by A.M - G.M and Jensen's inequality
3 sin A sin B sin C ≤ 3 sin A + sin B + sin C ≤ sin 3 A + B + C
So, sin A sin B sin C ≤ 8 3 3
Thus , ( a b c ) 2 ≥ 3 3 6 4 or a b c ≥ 3 . 5 0 9 5 3
also, equality occcurs at x = y = z = 4 3 1