Minimize Cosine

Geometry Level 5

Find the minimum possible value of

2 cos 4 θ + 8 cos 3 θ + 32 cos 2 θ + 56 cos θ + 100 2\cos 4 \theta + 8 \cos 3 \theta + 32 \cos 2 \theta + 56 \cos \theta + 100


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Victor Wang
May 20, 2014

For positive integers k k , ( cos θ + i sin θ ) k = e k i θ = cos k θ + i sin k θ (\cos\theta+i\sin\theta)^k = e^{ki\theta} = \cos{k\theta}+i\sin{k\theta} , so equating real parts and using sin 2 θ = 1 cos 2 θ \sin^2\theta = 1-\cos^2\theta gives us an expression for cos k θ \cos{k\theta} in terms of cos θ \cos\theta . For convenience, let x = cos θ [ 1 , 1 ] x = \cos\theta \in [-1,1] . Then cos 4 θ = 8 x 4 8 x 2 + 1 \cos{4\theta} = 8x^4 - 8x^2 + 1 , cos 3 θ = 4 x 3 3 x \cos{3\theta} = 4x^3-3x , and cos 2 θ = 2 x 2 1 \cos{2\theta} = 2x^2 -1 [Note: Or you can obtain this by the sum and difference formulas - Calvin]

So, 2 cos 4 θ + 8 cos 3 θ + 32 cos 2 θ + 56 cos θ + 100 2\cos{4\theta}+8\cos{3\theta}+32\cos{2\theta}+56\cos\theta+100 can be rewritten as 2 ( 8 x 4 8 x 2 + 1 ) + 8 ( 4 x 3 3 x ) + 32 ( 2 x 2 1 ) + 56 x + 100 2(8x^4-8x^2+1)+8(4x^3-3x)+32(2x^2-1)+56x+100 which is equal to 16 x 4 + 32 x 3 + 48 x 2 + 32 x + 70 = 16 ( x 2 + x + 1 ) 2 + 54 16x^4+32x^3+48x^2+32x+ 70 = 16(x^2+x+1)^2 + 54 where we use the factorization x 4 + 2 x 3 + 3 x 2 + 2 x + 1 = ( x 2 + x + 1 ) 2 . x^4+2x^3+3x^2+2x+1 = (x^2+x+1)^2 .

But x 2 + x + 1 = ( x + 1 2 ) 2 + 3 4 x^2+x+1 = (x+\frac{1}{2})^2+\frac{3}{4} is clearly minimized over the interval [ 1 , 1 ] [-1,1] at x = 1 2 x=-\frac{1}{2} , so the desired minimum is 16 ( 3 4 ) 2 + 54 = 63 16(\frac{3}{4})^2 + 54 = 63 .

This was the only non-calculus solution that was submitted.

A local minimum need not be a global minimum. All solutions via calculus that did not check the end points (esp for those that used a substitution cos θ = x \cos \theta = x ), or explain why the local minimum must be a global minimum were marked wrong.

Calvin Lin Staff - 7 years ago
Matt Enlow
May 20, 2014

Let f ( θ ) = 2 cos 4 θ + 8 cos 3 θ + 32 cos 2 θ + 56 cos θ + 100 f(\theta)=2 \cos 4\theta + 8 \cos 3\theta + 32 \cos 2\theta + 56 \cos \theta + 100 . We want to find the minimum value of this function.

Using the trig identities cos 4 θ = 8 cos 4 θ 8 cos 2 θ + 1 \cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1 , cos 3 θ = 4 cos 3 θ 3 cos θ \cos 3\theta = 4\cos^3 \theta - 3\cos \theta , and cos 2 θ = 2 cos 2 θ 1 \cos 2\theta = 2\cos^2 \theta - 1 , we substitute and get

f ( θ ) = 16 cos 4 θ + 32 cos 3 θ + 48 cos 2 θ + 32 cos θ + 70 f(\theta)=16\cos^4 \theta + 32\cos^3 \theta + 48\cos^2 \theta + 32\cos \theta + 70 .

Since this function is differentiable everywhere, to find its minimum value we can examine where its derivative is zero. So we differentiate:

f ( θ ) = 64 cos 3 θ sin θ 96 cos 2 θ sin θ 96 cos θ sin θ + 32 f'(\theta)=-64\cos^3 \theta \sin \theta - 96\cos^2 \theta \sin \theta - 96\cos \theta \sin \theta + 32

And factor:

f ( θ ) = 32 sin θ ( 2 cos θ + 1 ) ( cos 2 θ + cos θ + 1 ) f'(\theta)=-32 \sin \theta (2\cos \theta + 1)(\cos^2 \theta + \cos \theta + 1)

There are no real values of cos θ \cos \theta for which cos 2 θ + cos θ + 1 = 0 \cos^2 \theta + \cos \theta + 1 = 0 . Therefore f ( θ ) = 0 f'(\theta)=0 only if either sin θ = 0 \sin \theta = 0 or cos θ = 1 2 \cos\theta = -\frac{1}{2} . In other words, only if cos θ = 1 \cos\theta = -1 , 1 2 -\frac{1}{2} , or 1 1 . The respective values of f ( θ ) f(\theta) are 70 70 , 63 63 , and 198 198 . Therefore the minimum value of f ( θ ) f(\theta) is 63.

Correction in f' : the last term should be -32 sin theta, not +32.

Tom Capizzi - 4 years, 11 months ago
Ivan Stošić
May 20, 2014

The first part of the solution is to expand all the cosines into powers of cos ( x ) \cos(x) . This is a very boring part of the solution so i will omit it. In the end, we can replace cos ( x ) = t \cos(x)=t to get:

70 + 32 t + 48 t 2 + 32 t 3 + 16 t 4 70 + 32 t + 48 t^2 + 32 t^3 + 16 t^4

We will now try to minimize this polynomial, respecting 1 t 1 -1 \leq t \leq 1 :

If there is an extreme value the derivative of this function will have to be equal to 0 in that point. The derivative is:

32 + 96 t + 96 t 2 + 64 t 3 32 + 96 t + 96 t^2 + 64 t^3

We have to solve 32 + 96 t + 96 t 2 + 64 t 3 = 0 32 + 96 t + 96 t^2 + 64 t^3 = 0

We factor out 32 to get

1 + 3 t + 3 t 2 + 2 t 3 = 0 1 + 3 t + 3 t^2 + 2 t^3 = 0

We will write this in a slightly different way to get

1 + 3 t + 3 t 2 + t 3 = t 3 1 + 3 t + 3 t^2 + t^3 = -t^3

That is,

( t + 1 ) 3 = ( t ) 3 (t+1)^3 = (-t)^3

Since the function x 3 x^3 is a monotonic function, this implies

t + 1 = t t+1 = -t

Solving this we get t = 1 2 t = -\frac{1}{2}

Replacing this into the starting polynomial we get 63. Note that it is a good idea to also check the endpoints of the interval [ 1 , 1 ] [-1,1] to make sure that the minimum is not there.

Dusan Sobot
May 20, 2014

It is well known that, for any positive integer n n , cos n θ \cos n\theta is a polynomial of degree n n in cos θ \cos\theta (it is the Chebyshev polynomial of the first kind). Therefore, the strategy which should be used for solving this problem is to express everything in terms of x = cos θ x=\cos\theta and then find the minimum of a quartic function obtained.

By using the multiple angle formulae, we easily infer cos 2 θ = 2 x 2 1 , cos 3 θ = 4 x 3 3 x , cos 4 θ = 8 x 4 8 x 2 + 1 \cos 2\theta = 2x^2-1 , \cos 3\theta = 4x^3-3x, \cos 4\theta = 8x^4-8x^2+1 . Now, after some manipulation, the original expression becomes f ( x ) = 16 x 4 + 32 x 3 + 48 x 2 + 32 x + 70 f(x) = 16x^4+32x^3+48x^2+32x+70 , with derivative f ( x ) = 64 x 3 + 96 x 2 + 96 x + 32 = 32 ( 2 x + 1 ) ( x 2 + x + 1 ) f'(x) = 64x^3+96x^2+96x+32 = 32(2x+1)(x^2+x+1) .

Note that as x 2 + x + 1 = ( x + 1 2 ) 2 + 1 2 > 0 x^2+x+1 = (x+\frac12)^2 + \frac12 > 0 for all real x x , the first derivative of f f has only one zero, namely 1 2 -\frac12 . It is well-known that the extremes of f f can be obtained only at 3 points - at 1 2 -\frac 12 , and at the boundaries of the intervals at which f f is defined, in this case, these are -1 and 1, as 1 cos θ 1 -1\leq \cos \theta \leq 1 . By hand-checking, the minimum value of the expression is 63.

Calvin Lin Staff
May 13, 2014

Using the sum and product formulas, we get that

2 cos 4 θ + 8 cos 3 θ + 32 cos 2 θ + 56 cos θ + 46 = 16 cos 4 θ + 32 cos 3 θ + 48 cos 2 θ + 32 cos θ + 16 = 16 ( cos 2 θ + cos θ + 1 ) 2 = 16 ( ( cos θ + 1 2 ) 2 + 3 4 ) 2 \begin{aligned} 2 \cos 4 \theta + 8 \cos 3\theta + 32 \cos 2 \theta + 56 \cos \theta + 46 &= 16\cos^4 \theta + 32 \cos ^3 \theta + 48 \cos^2 \theta + 32 \cos \theta + 16 \\ &= 16 ( \cos^2 \theta + \cos \theta + 1)^2 \\ &= 16 \left(\left(\cos\theta + \frac{1}{2}\right)^2 +\frac{3}{4} \right)^2 \end{aligned}

This achieves it's minimum when cos θ = 1 2 \cos \theta = \frac {-1} {2} , which has value 16 ( 3 4 ) 2 = 9 16 \left(\frac {3}{4}\right) ^2 = 9 . Hence, the minimum of the expression is 100 46 + 9 = 63 100 - 46 + 9 = 63 .

why cant cos(theta)=-1 i didnt understand

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

Would that give the minimum value of the expression?

If you wanted to minimize ( cos θ + 1 2 ) 2 (\cos \theta + \frac{1}{2} ) ^ 2 , would that happen at cos θ = 1 \cos \theta = -1 or at cos θ = 1 2 \cos \theta = - \frac{1}{2} ?

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

got it you are right thank you for helping me

A Former Brilliant Member - 4 years, 7 months ago

Let cos ( θ ) = x \cos(\theta) = x . \begin{align} \cos(2 \theta) & =2 \cos(\theta) - 1 & = 2x^2-1\ \cos(3 \theta) & = 4 \cos^3(\theta) - 3 \cos(\theta) & = 4x^3 -3x\ \cos(4 \theta) & = 2 \cos^2(2 \theta) - 1 = 2(2x^2-1)^2-1 & = 8x^4 - 8x^2+1 \end{align} We want to find the minimum of 2 cos ( 4 θ ) + 8 cos ( 3 θ ) + 32 cos ( 2 θ ) + 56 cos ( θ ) + 100 2 \cos(4 \theta)+8 \cos(3 \theta)+32 \cos(2 \theta)+56 \cos(\theta)+100 . Equivalently, we can find the minimum of cos ( 4 θ ) + 4 cos ( 3 θ ) + 16 cos ( 2 θ ) + 28 cos ( θ ) + 50 \cos(4 \theta) + 4 \cos(3 \theta) + 16 \cos(2 \theta) + 28 \cos( \theta) + 50 and multiply by 2 2 . Hence, \begin{align} \cos(4 \theta) + 4 \cos(3 \theta) + 16 \cos(2 \theta) + 28 \cos( \theta) + 50 & = (8x^4 - 8x^2+1) + 4(4x^3-3x) + 16(2x^2-1) + 28x + 50\ & = 8x^4 + 16x^3 + 24x^2 + 16x + 35 \end{align} Since x = cos ( θ ) x = \cos( \theta) , we have x [ 1 , 1 ] x \in [-1,1] and hence we want to find the minimum of $$f(x) = 8x^4 + 16x^3 + 24x^2 + 16x + 35$$ in the domain x [ 1 , 1 ] x \in [-1,1] .

To do this, let us first find f ( x ) f'(x) . We get that $$f'(x) = 32x^3 + 48x^2 + 48x + 16 = 16(2x^3 + 3x^2 + 3x + 1) = 16(2x+1)(x^2 + x + 1)$$ Setting f ( x ) = 0 f'(x) = 0 , we get that x = 1 2 x=-\dfrac12 , which also lies in the domain [ 1 , 1 ] [-1,1] . Hence, the global minimum of f ( x ) f(x) is $$f(-1/2) = 8 \times \dfrac1{16} - 16 \times \dfrac18 + 24 \times \dfrac14 - 16 \times \dfrac12 + 35 = \dfrac12 - 2 + 6 - 8 + 35 = 31 \dfrac12$$

Hence, the minimum of 2 cos ( 4 θ ) + 8 cos ( 3 θ ) + 32 cos ( 2 θ ) + 56 cos ( θ ) + 100 2 \cos(4 \theta)+8 \cos(3 \theta)+32 \cos(2 \theta)+56 \cos(\theta)+100 is $$2 \times 31 \dfrac12 = 63$$

Febrian Yuwono
May 20, 2014

2\cos4?+8\cos3?+32\cos2?+56\cos?+100 2\cos 4\theta + 8\cos 3\theta + 32\cos 2\theta + 56 \cos \theta + 100 we substitue all \cos with more than 1 \theta : \cos 4\theta = \cos 2(2\theta) = 2 (\cos 2\theta)^2 -1 = 2 (2\cos^2 \theta -1)^2 -1 = 2 (4\cos^4 \theta - 4\cos^2 \theta +1) -1 = 8\cos^4 \theta - 8\cos^2 \theta + 1

\cos 3\theta = 4\cos^3 \theta - 3 \cos \theta

\cos 2\theta = 2\cos^2 \theta - 1

so we get a new formula :

2\cos 4\theta + 8\cos 3\theta + 32\cos 2\theta + 56 \cos \theta + 100 =16 \cos^4 \theta - 16\cos^2 \theta + 2 + 32 \cos^3 \theta - 24 \cos \theta + 64 \cos^2 \theta - 32 + 56 \cos \theta + 100 =16 \cos^4 \theta + 32 \cos^3 \theta + 48 \cos^2 \theta + 32 \cos \theta + 70

now we are looking for the minimum possible value, so the value of \cos \theta must be negative, and we have choice of -0,5 (\theta = 120^\circ) or -1 (\theta= 180^\circ). because we have \cos^4 \theta and \cos^2 \theta, we will get a positive number from inserting the negative one, so we must minimize both, where we can minimize it by inserting the \theta by 120^\circ so we will get these number : 16 \times 0,0625 + 32 \times (-0,125) + 48 \times 0,25 + 32 \times (-0,5) + 70 = 1 - 4 + 12 - 16 + 70 = \underline{63}

2cos4θ+8cos3θ+32cos2θ+56cosθ+100=2(2(2 cos^(2)θ-1)^(2)-1)+8(4 cos^(3)θ-3 cosθ)+32(2 cos^(2)θ-1)+56 cosθ+100. let cosθ=x ,then equation becomes 16 x^4 +32 x^3 + 48 x^2 +32 x+70 , differentiating and equating to zero to find minima,we get . 64 x^3+96 x^2 +96 x +32=0, x=-1/2 is a valid result (between -1 and 1). Again differentiating and substituting x=-1/2 we get positive value(48), so we confirm that x=-1/2 gives the minimum value of this equation.Thus substituting cosθ=-1/2 we get the value of equation as 67. 16 (-1/2)^4+32 (-1/2)^3 +48 (-1/2)^2 +32 (-1/2)-30+100=67.

Daniel Viana
May 20, 2014

[;2cos(4\theta )+8cos(3\theta )+32cos(2\theta )+56cos(\theta )+100 ;] Let [;cos(\theta )=u;] therefore: [;cos(2\theta )=2{ u }^{ 2 }-1;] [;cos(3\theta )={ 4u }^{ 3 }-{ 3u };] ;[cos(4\theta )=2{ ({ 2u }^{ 2 }-1) }^{ 2 }-1={ 8u }^{ 4 }-8{ u }^{ 2 }+1;] Substituting in the above equation we have: [;{ 16u }^{ 4 }+{ 32u }^{ 3 }+48{ u }^{ 2 }+32{ u }+100;] Deriving the expression we find: [;2{ u }^{ 3 }+3{ u }^{ 2 }+3u+1=0;] Now we note that as [;-1\le u\le 1;] as solution of the cubic equation is [;\frac { -1 }{ 2 };] and verification, we see that it is the value that minimizes the expression. Sorry for my bad english.

Naishad Parikh
May 20, 2014

f ( θ ) = 2 cos 4 θ + 8 cos 3 θ + 32 cos 2 θ + 56 cos θ + 100 f(\theta) = 2 \cos4\theta + 8 \cos3\theta + 32 \cos2\theta + 56 \cos\theta +100

Simplifying this function to contain only cos θ \cos\theta terms:

f ( θ ) = 16 ( cos 4 θ + 2 cos 3 θ + 3 cos 2 θ + 2 cos θ ) + 70 f(\theta) = 16 (\cos^4\theta + 2 \cos^3\theta + 3 \cos^2\theta + 2 \cos\theta) + 70

f ( θ ) = 16 ( A ) + 70 f(\theta) = 16 (A) + 70

Now function will have minimum value if and only if A 0 A \leq 0

Let cos θ = x \cos\theta = x

So, x 4 + 2 x 3 + 3 x 2 + 2 x 0 x^4 + 2 x^3 + 3 x^2 + 2 x \leq 0

Factorizing, we get x ( x + 1 ) ( x 2 + x + 2 ) 0 x ( x + 1) (x^2 + x + 2) \leq 0

But ( x 2 + x + 2 ) > 0 (x^2 + x + 2) > 0 for all x, so now

x ( x + 1 ) 0 x (x + 1) \leq 0

Case 1:

x ( x + 1 ) = 0 x (x + 1) = 0 ; which gives either x = 0 x = 0 or x + 1 = 0 x + 1 = 0

If x = 0 x = 0 then θ = ( π 2 + n π ) \theta = (\frac {\pi}{2} + n\pi) which gives A > 0 A > 0 and hence f ( θ ) > 70 f(\theta) > 70

if x = 1 x = -1 then θ = ( 2 n + 1 ) π \theta = (2n + 1)\pi which gives A = 0 A = 0 and hence f ( θ ) = 70 f(\theta) = 70

Case 2: x ( x + 1 ) < 0 x (x + 1) < 0 ; where either x > 0 x > 0 and x + 1 < 0 x + 1 < 0 and that is not possible. So x < 0 x < 0 and x + 1 > 0 x + 1 > 0 Simplifying, 0 > x > 1 0 > x > -1

0 > cos θ > 1 0 > \cos\theta > -1 that gives

( 2 n + 1 ) π 2 > θ > ( 2 n + 1 ) π (2n + 1)\frac {\pi}{2} > \theta > (2n + 1)\pi

Now we see that among θ = ( π 2 + π 3 ) \theta = (\frac {\pi}{2} + \frac {\pi}{3}) ; θ = ( π 2 + π 4 ) \theta = (\frac {\pi}{2} + \frac {\pi}{4}) and θ = ( π 2 + π 6 ) \theta = (\frac {\pi}{2} + \frac {\pi}{6})

A < 0 A < 0 only for θ = ( π 2 + π 6 ) \theta = (\frac {\pi}{2} + \frac {\pi}{6})

So evaluating we get f ( θ ) = 63 f(\theta) = 63

Matteo Staccone
May 20, 2014

We want to minimize the function f ( x ) = 2 c o s 4 x + 8 c o s 3 x + 32 c o s 2 x + 56 c o s x f(x)= 2cos4x+8cos3x+32cos2x+56cosx . Now using the sum-to-product identity of cosine we can rewrite f(x) as : f ( x ) = 4 c o s ( 7 2 x ) c o s ( 1 2 x ) + 64 c o s ( 3 2 x ) c o s ( 1 2 x ) + 24 c o s x + 6 c o s 3 x f(x)=4cos(\frac{7}{2}x)cos(\frac{1}{2}x)+64cos(\frac{3}{2}x)cos(\frac{1}{2}x)+24cosx+6cos3x . Now, since 64 is greater than the sum of the other "coefficients" (which is 34) and 1 c o s x 1 -1\leq cosx\leq 1 , f(x) is minimized when 64 c o s ( 3 2 x ) c o s ( 1 2 x ) 64cos(\frac{3}{2}x)cos(\frac{1}{2}x) is minimized. But it is easy to see that 64 c o s ( 3 2 x ) c o s ( 1 2 x ) 64cos(\frac{3}{2}x)cos(\frac{1}{2}x) is minimized when x = 2 3 π x=\frac{2}{3} \pi . Now substituting x = 2 3 π x=\frac{2}{3} \pi in f(x) we obtain f(x)=-37. Now to obtain the desired result we must add 100 to -37 which makes 63.

Silvio Sergio
May 20, 2014

The derivative is 8 ( s i n θ + 3 s i n 2 θ + 8 s i n 3 θ + 7 s i n 4 θ ) -8(sin \theta + 3 sin 2\theta + 8 sin 3\theta + 7 sin 4\theta) .

For θ = 2 π 3 \theta = \frac {2 \pi}{3} it is null: s i n θ + 3 s i n 2 θ + 8 s i n 3 θ + 7 s i n 4 θ = 1 2 ( 1 + 8 + 0 7 ) = 0 sin \theta + 3 sin 2\theta + 8 sin 3\theta + 7 sin 4\theta = \frac{1}{2} ( -1 + 8 +0 -7) = 0 .

I can't demonstrate that this local min is global, I guessed it from the plot :(

Jithin J
May 20, 2014

c o s 4 θ = 8 c o s 4 θ 8 c o s 2 θ + 1 cos 4\theta = 8cos^4 \theta - 8cos^2 \theta + 1 , c o s 3 θ = 4 c o s 3 θ 3 c o s θ cos 3\theta = 4cos^3 \theta - 3cos \theta , c o s 2 θ = 2 c o s 2 θ 1 cos 2\theta = 2 cos^2 \theta -1 . Substitute for these into the equation, and let x = c o s θ x= cos \theta . The statement now translates to finding minimum of, say y = 16 x 4 + 32 x 3 + 48 x 2 + 32 x + 70 y=16x^4 + 32x^3+48x^2+32x+70 . Taking d y d x = 0 \frac{dy}{dx} = 0 , we get 2 x 3 + 3 x 2 + 3 x + 1 = 0 2x^3+3x^2+3x+1 =0 .

ie, x 3 + ( 1 + x ) 3 = 0 x^3 + (1+x)^3 = 0 for 1 x 1 -1 \le x \le 1 ,

x 3 = ( 1 + x ) 3 -x^3 = (1+x)^3 for 1 x 1 -1 \le x \le 1 .

Only x = 1 2 x=\frac{-1}{2} satisfies this equality by taking cube root on both sides. Also, d 2 y d x 2 \frac{d^2y}{dx^2} is > 0 > 0 at x = 1 2 x= \frac{-1}{2} . Therefore we have a minimum at x = 1 2 x= \frac{-1}{2} . Substituting this value, we get minimum value of y = 63 y = 63 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...