Minimize it!

Algebra Level 5

3 a b + c + 4 b c + a + 5 c a + b \large \frac{3a}{b+c}+\frac{4b}{c+a}+\frac{5c}{a+b}

Let a a , b b and c c be positive real numbers. Find the minimum value (to 3 decimal places) of the expression above.


The answer is 5.809.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given expression is :

3 a b + c + 3 \frac{3a}{b+c} + 3 + 4 b c + a + 4 \frac{4b}{c+a} + 4 + 5 c a + b + 5 12 \frac{5c}{a+b} + 5 - 12

3 a + 3 b + 3 c b + c \frac{3a + 3b + 3c}{b+c} + 4 b + 4 c + 4 a c + a \frac{4b + 4c + 4a}{c+a} + 5 c + 5 a + 5 b a + b 12 \frac{5c + 5a + 5b}{a+b} - 12

[ 3 b + c + 4 c + a + 5 a + b ] [\frac{3}{b+c} + \frac{4}{c + a} + \frac{5}{a+b}] [ a + b + c ] [a + b + c] 12 -12

Now , using Titu's Lemma , we get ,

[ 3 b + c + 4 c + a + 5 a + b ] [ a + b + c ] 12 [ 3 + 4 + 5 ] 2 2 ( a + b + c ) ( a + b + c ) 12 [\frac{3}{b+c} + \frac{4}{c + a} + \frac{5}{a+b}][a + b + c] -12 \ge \frac {\left[\sqrt3 + \sqrt4 + \sqrt5 \right]^{2}}{2(a+b+c)}(a+ b+c) -12

[ 3 b + c + 4 c + a + 5 a + b ] [ a + b + c ] 12 [ 3 + 4 + 5 ] 2 2 12 [\frac{3}{b+c} + \frac{4}{c + a} + \frac{5}{a+b}][a + b + c] -12 \ge \frac {\left[\sqrt3 + \sqrt4 + \sqrt5 \right]^{2}}{2} -12

[ 3 b + c + 4 c + a + 5 a + b ] [ a + b + c ] 12 5.809 [\frac{3}{b+c} + \frac{4}{c + a} + \frac{5}{a+b}][a + b + c] -12 \ge 5.809

Try my problem “A cubic inequality" \text{Try my problem “A cubic inequality"}

3 a b + c + 5 c a + b + 4 b a + c = ( a + b + c ) ( 5 a + b + 4 a + c + 3 b + c ) 12 = 1 2 ( 5 x + 3 y + 4 z ) ( x + y + z ) 12 \frac{3 a}{b+c}+\frac{5 c}{a+b}+\frac{4 b}{a+c}=(a+b+c) \left(\frac{5}{a+b}+\frac{4}{a+c}+\frac{3}{b+c}\right)-12=\frac{1}{2} \left(\frac{5}{x}+\frac{3}{y}+\frac{ 4}{z}\right) (x+y+z)-12

where x = a + b , y = b + c , z = a + c x=a+b,y=b+c,z=a+c . Then by setting X = x 5 X=\frac{x}{\sqrt{5}} , etc.

1 2 ( 5 X + 3 Y + 2 Z ) ( 5 X + 3 Y + 2 Z ) 12 1 2 ( 2 + 3 + 5 ) 2 ( 1 X ) 5 2 + 3 + 5 X 5 2 + 3 + 5 ( 1 Y ) 3 2 + 3 + 5 Y 3 2 + 3 + 5 ( 1 Z ) 2 2 + 3 + 5 Z 2 2 + 3 + 5 12 = 1 2 ( 2 + 3 + 5 ) 2 12 \frac{1}{2} \left(\frac{\sqrt{5}}{X}+\frac{\sqrt {3}}{Y}+\frac{2}{Z}\right) \left(\sqrt{5} X+\sqrt{3} Y+2 Z\right)-12\geq \frac{1}{2} \left(2+\sqrt{3}+\sqrt{5}\right)^2 \left(\frac{1}{X}\right)^{\frac{\sqrt{5}}{2+\sqrt{3}+\sqrt{5}}} X^{\frac{\sqrt{5}}{2+\sqrt{3}+\sqrt{ 5}}} \left(\frac{1}{Y}\right)^{\frac{\sqrt{3}}{2+\sqrt{3}+\sqrt{5}}} Y^{\frac{\sqrt{3}}{2+\sqrt{3}+\sqrt{ 5}}} \left(\frac{1}{Z}\right)^{\frac{2}{2 +\sqrt{3}+\sqrt{5}}} Z^{\frac{2}{2+\sqrt{3}+\sqrt{5}}}-12 =\frac{1}{2} \left(2+\sqrt{3}+\sqrt{5}\right)^2-1 2

where I used the weighted AM - GM.

Anybody have a simpler solution?

@Christopher Criscitiello , Your solution is nice. But you should use \large and \dfrac in your LaTeX , so that it becomes more clear.

Vilakshan Gupta - 3 years, 8 months ago

Cauchy scwharz

Rafi Adzikra - 3 years, 8 months ago

I mean use cauchy after you factorize it

Rafi Adzikra - 3 years, 8 months ago

How about this? Let the expression whose minimum we have to find be Q, P= 3c/(b+c) + 5b/(a+b) + 4a/(a+c) And N is same as P just in place of c,b,a in numerator use b,a,c. Now P+N=12, and apply Am gm on Q+P and on Q+N, then add those together and substitute the value for P+N (Sorry I don't know how to use latex, this is messed up)

Zainul Niaz - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...