Minimize It!

Algebra Level 5

Let M M be the minimum of x + y / 2 + z / 3 + w / 4 x+y/2+z/3+w/4 subject to the conditions

( 1 ) x 2 + y 2 + z 2 + w 2 1 (1) \ \ \ x^2+y^2+z^2+w^2 \leq 1

( 2 ) 4 x + 3 y + 2 z + w 1 (2) \ \ \ 4x+3y+2z+w \leq 1

M = a b M = -\frac{\sqrt{a}}{b} , where a , b a, b are integers and a a is square-free. Submit a + b a+b .


The answer is 217.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 17, 2017

If we consider the vectors u = ( 1 1 / 2 1 / 3 1 / 4 ) v = ( 4 3 2 1 ) \mathbf{u} \; = \; \left(\begin{array}{c} 1 \\ 1/2 \\ 1/3 \\ 1/4\end{array}\right) \hspace{2cm} \mathbf{v} \; = \; \left(\begin{array}{c}4 \\ 3 \\ 2 \\ 1 \end{array}\right) then we see that u = 1 12 205 |\mathbf{u}| = \tfrac{1}{12}\sqrt{205} , v = 30 |\mathbf{v}| = \sqrt{30} and u v = 77 12 \mathbf{u}\cdot\mathbf{v} = \tfrac{77}{12} . Thus the angle between u \mathbf{u} and v \mathbf{v} is θ \theta , where cos θ = 77 6150 \cos\theta = \tfrac{77}{\sqrt{6150}} .

Since condition (1) is rotationally symmetric, we can rotate the vectors and consider u ^ = 205 12 ( cos θ sin θ 0 0 ) v ^ = 30 ( 1 0 0 0 ) \hat{\mathbf{u}} \; = \; \tfrac{\sqrt{205}}{12}\left(\begin{array}{c} \cos\theta \\ \sin\theta \\ 0 \\0 \end{array} \right) \hspace{2cm} \hat{\mathbf{v}} \; = \; \sqrt{30}\left(\begin{array}{c} 1 \\ 0 \\0 \\ 0 \end{array}\right) and so consider the equivalent problem of minimizing u ^ x = 205 12 ( x cos θ + y sin θ ) \hat{\mathbf{u}}\cdot\mathbf{x} \; = \; \tfrac{\sqrt{205}}{12}\big(x\cos\theta + y\sin\theta\big) subject to the conditions x 2 = x 2 + y 2 + z 2 + w 2 1 v ^ x = 30 x 1 |\mathbf{x}|^2 \; = \; x^2 + y^2 + z^2 + w^2 \le 1 \hspace{2cm} \hat{\mathbf{v}}\cdot\mathbf{x} \; = \; \sqrt{30}x \le 1 and we see that this minimum is 205 12 -\tfrac{\sqrt{205}}{12} , achieved when x = cos θ x = -\cos\theta , y = sin θ y = -\sin\theta , z = w = 0 z=w=0 . This makes the answer 205 + 12 = 217 205 + 12 = \boxed{217} .

James Wilson
Jan 13, 2018

I first realized inequality (2) could be completely ignored because the minimum occurs when all the variables are less than zero. So then I applied the Cauchy-Schwarz inequality with the vectors ( 1 , 1 2 , 1 3 , 1 4 ) (1,\frac{1}{2},\frac{1}{3},\frac{1}{4}) and ( x , y , z , w ) (x,y,z,w) to get: x + y 2 + z 3 + w 4 1 + 1 4 + 1 9 + 1 16 x 2 + y 2 + z 2 + w 2 = 205 12 \Big|x+\frac{y}{2}+\frac{z}{3}+\frac{w}{4}\Big|\leq \sqrt{1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}}\sqrt{x^2+y^2+z^2+w^2}=\frac{\sqrt{205}}{12} This implies x + y 2 + z 3 + w 4 205 12 x+\frac{y}{2}+\frac{z}{3}+\frac{w}{4}\geq -\frac{\sqrt{205}}{12} . One can verify that equality occurs if we take ( x , y , z , w ) = 12 205 ( 1 , 1 2 , 1 3 , 1 4 ) (x,y,z,w)=-\frac{12}{\sqrt{205}}(1,\frac{1}{2},\frac{1}{3},\frac{1}{4}) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...