( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( x + x 1 ) 6 − ( x 6 + x 6 1 ) − 2
Given that x is a positive real number , find the minimum value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I just corrected the mistake. Thanks for mentioning. And I'm pleased with you solution. 😊
Let y = x + x 1 . Then we have:
y 3 = ( x + x 1 ) 3 = x 3 + 3 x + x 3 + x 3 1 = x 3 + x 3 1 + 3 y
⟹ x 3 + x 3 1 ( x 3 + x 3 1 ) 2 x 6 + 2 + x 6 1 ⟹ x 6 + x 6 1 = y 3 − 3 y = ( y 3 − 3 y ) 2 = y 6 − 6 y 4 + 9 y 2 = y 6 − 6 y 4 + 9 y 2 − 2
Now we have:
f ( x ) = ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( x + x 1 ) 6 − ( x 6 + x 6 1 ) − 2 = y 3 + y 3 − 3 y y 6 − y 6 + 6 y 4 − 9 y 2 + 2 − 2 = 2 y 3 − 3 y 6 y 4 − 9 y 2 = 3 y = 3 ( x + x 1 ) ≥ 3 ( 2 ) = 6 By AM-GM inequality
simple any number plus its inverse is always greater than or equal to 2, x+1/x>=2
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( x + x 1 ) 6 − ( x 6 + x 6 1 ) − 2 ⟹ f ( x ) = ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( x + x 1 ) 6 − ( ( x 3 ) 2 + ( x 3 ) 2 1 + 2 ⋅ x 3 ⋅ x 3 1 ) f ( x ) = ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( ( x + x 1 ) 3 ) 2 − ( x 3 + x 3 1 ) 2 f ( x ) = ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ( ( x + x 1 ) 3 − ( x 3 + x 3 1 ) ) ( ( x + x 1 ) 3 + ( x 3 + x 3 1 ) ) f ( x ) = 3 ( x + x 1 ) Using A.M - G.M x + x 1 ≥ 2 f ( x ) Min. = 6
Please mention that x > 0