Minimize it!

Algebra Level 3

( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large \frac { {\left( x + \dfrac{1}{x} \right)}^{6} - \left( x^6 + \dfrac{1}{x^6} \right) - 2}{ {\left( x + \dfrac{1}{x} \right)}^{3} + \left( x^3 + \dfrac{1}{x^3} \right)}

Given that x x is a positive real number , find the minimum value of the expression above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sabhrant Sachan
Sep 3, 2016

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( x + 1 x ) 6 ( ( x 3 ) 2 + 1 ( x 3 ) 2 + 2 x 3 1 x 3 ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ) 2 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ) ( ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = 3 ( x + 1 x ) Using A.M - G.M x + 1 x 2 f ( x ) Min. = 6 f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \implies f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( (x^3)^2+\dfrac{1}{(x^3)^2}+2\cdot x^3\cdot\dfrac{1}{x^3}\right)}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left( x+\dfrac{1}{x} \right)^3 \right)^2-\left( x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left(x+\dfrac{1}{x}\right)^3-\left( x^3+\dfrac{1}{x^3}\right) \right) \left( \cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \right)}{\cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)}} \\ f(x)=3\left( x+\dfrac{1}{x} \right) \\ \text{Using A.M - G.M} \quad x+\dfrac{1}{x} \ge 2 \\ \boxed{f(x)_{\text{Min.}} = 6}


Please mention that x > 0 \text{Please mention that } x>0

I just corrected the mistake. Thanks for mentioning. And I'm pleased with you solution. 😊

Tapas Mazumdar - 4 years, 9 months ago

Let y = x + 1 x y = x + \dfrac 1x . Then we have:

y 3 = ( x + 1 x ) 3 = x 3 + 3 x + 3 x + 1 x 3 = x 3 + 1 x 3 + 3 y \begin{aligned} y^3 & = \left(x + \dfrac 1x \right)^3 = x^3 + 3x + \frac 3x + \frac 1{x^3} = x^3 + \frac 1{x^3} + 3y \end{aligned}

x 3 + 1 x 3 = y 3 3 y ( x 3 + 1 x 3 ) 2 = ( y 3 3 y ) 2 x 6 + 2 + 1 x 6 = y 6 6 y 4 + 9 y 2 x 6 + 1 x 6 = y 6 6 y 4 + 9 y 2 2 \begin{aligned} \implies x^3 + \frac 1{x^3} & = y^3-3y \\ \left(x^3 + \dfrac 1{x^3} \right)^2 & = (y^3-3y)^2 \\ x^6 + 2 + \dfrac 1{x^6} & = y^6 - 6y^4 + 9y^2 \\ \implies x^6 + \dfrac 1{x^6} & = y^6 - 6y^4 + 9y^2 - 2 \end{aligned}

Now we have:

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = y 6 y 6 + 6 y 4 9 y 2 + 2 2 y 3 + y 3 3 y = 6 y 4 9 y 2 2 y 3 3 y = 3 y = 3 ( x + 1 x ) By AM-GM inequality 3 ( 2 ) = 6 \begin{aligned} f(x) & = \frac { {\left( x + \frac{1}{x} \right)}^{6} - \left( x^6 + \frac{1}{x^6} \right) - 2}{ {\left( x + \frac{1}{x} \right)}^{3} + \left( x^3 + \frac{1}{x^3} \right)} \\ & = \frac {y^6 - y^6 + 6y^4 - 9y^2 + 2-2}{y^3 + y^3 - 3y} \\ & = \frac {6y^4 - 9y^2}{2y^3 - 3y} \\ & = 3y \\ & = 3 \left(\color{#3D99F6}{x + \frac 1x} \right) & \small \color{#3D99F6}{\text{By AM-GM inequality}} \\ & \ge 3 \left(\color{#3D99F6}{2} \right) = \boxed{6} \end{aligned}

Ronaljojo Saha
Sep 8, 2016

simple any number plus its inverse is always greater than or equal to 2, x+1/x>=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...