Minimize the expression!

Algebra Level 2

Find the least value assumed by z z if z = x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 \large z=x^2 + 2xy + 3y^2 + 2x + 6y + 4


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayon Ghosh
Nov 2, 2017

One more method of doing it except completing the square.

First differentiate w.r.t to x x and set it equal to 0 0 .Repeat the same w.r.t y y .

d / d x \large d/dx ( x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 ) \large(x^2 + 2xy + 3y^2 + 2x + 6y + 4) = 2 x + 2 y + 2 \large 2x+2y + 2 = 0 = 0 . . . ( 1 ) ...(1)

d / d y \large d/dy ( x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 ) \large(x^2 + 2xy + 3y^2 + 2x + 6y + 4) = 2 x + 6 y + 6 \large 2x+6y + 6 = 0 = 0 . . . ( 2 ) ...(2)

Solving 1 and 2,

x m i n = 0 \Huge \color{#D61F06}{x_{min}=0}

y m i n = 1 \Huge \color{#3D99F6}{y_{min}=-1}

z m i n = 1 \Huge \color{#20A900}{z_{min}=1}

Nice approach!

Rishu Jaar - 3 years, 7 months ago
Rishu Jaar
Nov 1, 2017

z = ( x + y + 1 ) 2 + 2 ( y + 1 ) 2 + 1 z=(x+y+1)^2 +2(y+1)^2 + 1

Clearly at \text{Clearly at } x = 0 \color{#D61F06}{x=0} and y = 1 , both square expression becomes zero , hence : \color{#D61F06}{y= -1} ,\text{both square expression becomes zero , hence :} z m i n = 1 \LARGE \color{#EC7300}{\boxed{z_{min}=1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...