Minimize the Expression 4

Algebra Level 4

Let a , b , c a,b,c be distinct real numbers. Minimize a 2 ( b c ) 2 + b 2 ( c a ) 2 + c 2 ( a b ) 2 \frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(a-b)^2}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alan Yan
Sep 11, 2015

Notice that c y c b c ( a b ) ( a c ) = ( a b ) ( b c ) ( c a ) ( a b ) ( b c ) ( c a ) = 1 \sum_{cyc}{\frac{bc}{(a-b)(a-c)}} = \frac{(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)} = 1

Thus, a 2 ( b c ) 2 + b 2 ( c a ) 2 + a 2 ( a b ) 2 = \frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{a^2}{(a-b)^2} = ( a b c + b c a + c a b ) 2 + 2 c y c b c ( a b ) ( a c ) = ( a b c + b c a + c a b ) 2 + 2 2 (\frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b})^2 + 2\sum_{cyc}{\frac{bc}{(a-b)(a-c)}} = (\frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b})^2 + 2 \geq 2

Equality holds when a b c + b c a + c a b = 0 \frac{a}{b-c} + \frac{b}{c-a} + \frac{c}{a-b} = 0 .

Department 8
Sep 11, 2015

Maybe this solution is wrong.

By Cauchy-Schwarz Inequality

( a 2 ( b c ) 2 + b 2 ( c a ) 2 + c 2 ( a b ) 2 ) ( ( b c ) 2 + ( c a ) 2 + ( a b ) 2 ) ( a + b + c ) 2 ( a 2 ( b c ) 2 + b 2 ( c a ) 2 + c 2 ( a b ) 2 ) ( a + b + c ) 2 2 ( a 2 + b 2 + c 2 a b b c c a ) \left( \frac { a^{ 2 } }{ (b-c)^{ 2 } } +\frac { b^{ 2 } }{ (c-a)^{ 2 } } +\frac { c^{ 2 } }{ (a-b)^{ 2 } } \right) \left( { (b-c) }^{ 2 }+{ (c-a) }^{ 2 }+{ (a-b) }^{ 2 } \right) \ge { (a+b+c) }^{ 2 }\\ \left( \frac { a^{ 2 } }{ (b-c)^{ 2 } } +\frac { b^{ 2 } }{ (c-a)^{ 2 } } +\frac { c^{ 2 } }{ (a-b)^{ 2 } } \right) \ge \frac { { (a+b+c) }^{ 2 } }{ 2({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca) }

Now we will prove another identity ( a + b + c ) 2 ( a 2 + b 2 + c 2 a b b c c a ) { (a+b+c) }^{ 2 }\ge ({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca) for a , b , c 0 a,b,c \ge 0 .

Consider

( a + b + c ) 2 ( a 2 + b 2 + c 2 a b b c c a ) = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) a 2 b 2 c 2 + a b + b c + c a = 3 ( a b + b c + c a ) 0 ( a s a , b , c 0 ) { (a+b+c) }^{ 2 }-({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca)\\ ={ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+2(ab+bc+ca)-{ a }^{ 2 }-{ b }^{ 2 }-{ c }^{ 2 }+ab+bc+ca\\ =3(ab+bc+ca)\ge 0\quad (as\quad a,b,c\ge 0)

Now the minimum value of ( a + b + c ) 2 2 ( a 2 + b 2 + c 2 a b b c c a ) \frac { { (a+b+c) }^{ 2 } }{ 2({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca) } can be taken out as follows

( a + b + c ) 2 ( a 2 + b 2 + c 2 a b b c c a ) ( a + b + c ) 2 2 ( a 2 + b 2 + c 2 a b b c c a ) 1 2 { (a+b+c) }^{ 2 }\ge ({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca)\\ \frac { { (a+b+c) }^{ 2 } }{ 2({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca) } \ge \frac { 1 }{ 2 }

This means

( a 2 ( b c ) 2 + b 2 ( c a ) 2 + c 2 ( a b ) 2 ) ( ( b c ) 2 + ( c a ) 2 + ( a b ) 2 ) ( a + b + c ) 2 ( a 2 ( b c ) 2 + b 2 ( c a ) 2 + c 2 ( a b ) 2 ) ( a + b + c ) 2 2 ( a 2 + b 2 + c 2 a b b c c a ) 1 2 \left( \frac { a^{ 2 } }{ (b-c)^{ 2 } } +\frac { b^{ 2 } }{ (c-a)^{ 2 } } +\frac { c^{ 2 } }{ (a-b)^{ 2 } } \right) \left( { (b-c) }^{ 2 }+{ (c-a) }^{ 2 }+{ (a-b) }^{ 2 } \right) \ge { (a+b+c) }^{ 2 }\\ \left( \frac { a^{ 2 } }{ (b-c)^{ 2 } } +\frac { b^{ 2 } }{ (c-a)^{ 2 } } +\frac { c^{ 2 } }{ (a-b)^{ 2 } } \right) \ge \frac { { (a+b+c) }^{ 2 } }{ 2({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca) } \ge \frac { 1 }{ 2 }

So, I thought let's round up bigger integers and entered 1 , 2 1,2 and got the correct answer.

it really is wrong

Kaustubh Miglani - 5 years, 8 months ago

it is wrong

Kaustubh Miglani - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...