Let a , b , c be distinct real numbers. Minimize ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 c 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Maybe this solution is wrong.
By Cauchy-Schwarz Inequality
( ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 c 2 ) ( ( b − c ) 2 + ( c − a ) 2 + ( a − b ) 2 ) ≥ ( a + b + c ) 2 ( ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 c 2 ) ≥ 2 ( a 2 + b 2 + c 2 − a b − b c − c a ) ( a + b + c ) 2
Now we will prove another identity ( a + b + c ) 2 ≥ ( a 2 + b 2 + c 2 − a b − b c − c a ) for a , b , c ≥ 0 .
Consider
( a + b + c ) 2 − ( a 2 + b 2 + c 2 − a b − b c − c a ) = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) − a 2 − b 2 − c 2 + a b + b c + c a = 3 ( a b + b c + c a ) ≥ 0 ( a s a , b , c ≥ 0 )
Now the minimum value of 2 ( a 2 + b 2 + c 2 − a b − b c − c a ) ( a + b + c ) 2 can be taken out as follows
( a + b + c ) 2 ≥ ( a 2 + b 2 + c 2 − a b − b c − c a ) 2 ( a 2 + b 2 + c 2 − a b − b c − c a ) ( a + b + c ) 2 ≥ 2 1
This means
( ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 c 2 ) ( ( b − c ) 2 + ( c − a ) 2 + ( a − b ) 2 ) ≥ ( a + b + c ) 2 ( ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 c 2 ) ≥ 2 ( a 2 + b 2 + c 2 − a b − b c − c a ) ( a + b + c ) 2 ≥ 2 1
So, I thought let's round up bigger integers and entered 1 , 2 and got the correct answer.
it really is wrong
it is wrong
Problem Loading...
Note Loading...
Set Loading...
Notice that c y c ∑ ( a − b ) ( a − c ) b c = ( a − b ) ( b − c ) ( c − a ) ( a − b ) ( b − c ) ( c − a ) = 1
Thus, ( b − c ) 2 a 2 + ( c − a ) 2 b 2 + ( a − b ) 2 a 2 = ( b − c a + c − a b + a − b c ) 2 + 2 c y c ∑ ( a − b ) ( a − c ) b c = ( b − c a + c − a b + a − b c ) 2 + 2 ≥ 2
Equality holds when b − c a + c − a b + a − b c = 0 .