Minimize The Expression 7

Geometry Level 4

( cos A cos B ) 2 + ( cos B cos C ) 2 + ( cos C cos A ) 2 + 8 cos A cos B cos C \left(\dfrac{\cos A}{\cos B} \right)^2+ \left(\dfrac{\cos B}{\cos C} \right)^2+\left(\dfrac{\cos C}{\cos A} \right)^2+8\cos A \cos B \cos C

If A , B , C A, B, C are the angles of an acute angled triangle, minimize the expression above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alan Yan
Sep 26, 2015

Use substitution ( x , y , z ) = ( 2 cos A , 2 cos B , 2 cos C ) (x,y,z) = (2\cos A , 2\cos B, 2\cos C) . It is well known that x 2 + y 2 + z 2 + x y z = 4 x^2 + y^2 + z^2 + xyz = 4 .

The expression becomes ( x y ) 2 + ( y z ) 2 + ( z x ) 2 + x y z (\frac{x}{y})^2 + (\frac{y}{z})^2 + (\frac{z}{x})^2 + xyz


(Lemma 1) \textbf{(Lemma 1)} If a b c 1 abc \leq 1 , a b + b c + c a a + b + c \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq a + b + c

Proof : \textit{Proof : } Multiply a b c abc a 2 c + b 2 a + c 2 b a b c ( a + b + c ) a^2c + b^2a + c^2b \geq abc(a+b+c) We prove a stronger inequality a 2 c + b 2 a + c 2 b ( a b c ) 2 3 ( a + b + c ) a^2c + b^2a + c^2b \geq (abc)^{\frac{2}{3}}(a+b+c) a 2 c + b 2 a + c 2 b a 5 3 b 2 3 c 2 3 + a 2 3 b 5 3 c 2 3 + a 2 3 b 2 3 c 5 3 a^2c + b^2a + c^2b \geq a^{\frac{5}{3}}b^{\frac{2}{3}}c^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{5}{3}}c^{\frac{2}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}}c^{\frac{5}{3}} By AM-GM a 2 c + a 2 c + b 2 a 3 a 5 3 b 2 3 c 2 3 a^2c + a^2c + b^2a \geq 3a^{\frac{5}{3}}b^{\frac{2}{3}}c^{\frac{2}{3}} b 2 a + b 2 a + c 2 b 3 a 2 3 b 5 3 c 2 3 b^2a + b^2a + c^2b \geq 3a^{\frac{2}{3}}b^{\frac{5}{3}}c^{\frac{2}{3}} c 2 b + c 2 b + a 2 c 3 a 2 3 b 2 3 c 5 3 c^2b + c^2b + a^2c \geq 3a^{\frac{2}{3}}b^{\frac{2}{3}}c^{\frac{5}{3}} Adding all of these yields the desired Lemma.


(Lemma 2) \textbf{(Lemma 2)} cos A cos B cos C 1 8 \cos A \cos B \cos C \leq \frac{1}{8} Proof: \textit{Proof:} Take l o g log of both sides (natural logarithm). Suffices to prove log cos A + log cos B + log cos C log 1 8 \log \cos A + \log \cos B + \log \cos C \leq \log \frac{1}{8} Consider the function f ( x ) = log cos x f(x) = \log \cos x

f ( x ) = tan x f'(x) = -\tan x

f ( x ) = sec 2 x f''(x) = -\sec^2 x \implies concave for [ 0 , π 2 ] [0, \frac{\pi}{2} ] .

By Jensen, f ( A ) + f ( B ) + f ( C ) 3 f ( A + B + C 3 ) = 3 f ( 6 0 ) = log 1 8 f(A) + f(B) + f(C) \leq 3f(\frac{A+B+C}{3}) = 3f(60^{\circ}) = \log \frac{1}{8} and we have proven the Lemma.


( x y ) 2 + ( y z ) 2 + ( z x ) 2 + x y z (\frac{x}{y})^2 + (\frac{y}{z})^2 + (\frac{z}{x})^2 + xyz Let ( a , b , c ) = ( x 2 , y 2 , z 2 ) (a,b,c) = (x^2 , y^2, z^2) and notice that a b c 1 abc \leq 1 since it all goes down to cos A cos B cos C 1 8 \cos A \cos B \cos C \leq \frac{1}{8}

This implies that ( x y ) 2 + ( y z ) 2 + ( z x ) 2 + x y z x 2 + y 2 + z 2 + x y z = 4 (\frac{x}{y})^2 + (\frac{y}{z})^2 + (\frac{z}{x})^2 + xyz \geq x^2 + y^2 + z^2 + xyz = \boxed{4}

from our first identity. Equality holds when A = B = C = 6 0 A = B = C = 60^{\circ}

You took so much efforts. Here's an upvote.

Nihar Mahajan - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...