If are the angles of an acute angled triangle, minimize the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Use substitution ( x , y , z ) = ( 2 cos A , 2 cos B , 2 cos C ) . It is well known that x 2 + y 2 + z 2 + x y z = 4 .
The expression becomes ( y x ) 2 + ( z y ) 2 + ( x z ) 2 + x y z
(Lemma 1) If a b c ≤ 1 , b a + c b + a c ≥ a + b + c
Proof : Multiply a b c a 2 c + b 2 a + c 2 b ≥ a b c ( a + b + c ) We prove a stronger inequality a 2 c + b 2 a + c 2 b ≥ ( a b c ) 3 2 ( a + b + c ) a 2 c + b 2 a + c 2 b ≥ a 3 5 b 3 2 c 3 2 + a 3 2 b 3 5 c 3 2 + a 3 2 b 3 2 c 3 5 By AM-GM a 2 c + a 2 c + b 2 a ≥ 3 a 3 5 b 3 2 c 3 2 b 2 a + b 2 a + c 2 b ≥ 3 a 3 2 b 3 5 c 3 2 c 2 b + c 2 b + a 2 c ≥ 3 a 3 2 b 3 2 c 3 5 Adding all of these yields the desired Lemma.
(Lemma 2) cos A cos B cos C ≤ 8 1 Proof: Take l o g of both sides (natural logarithm). Suffices to prove lo g cos A + lo g cos B + lo g cos C ≤ lo g 8 1 Consider the function f ( x ) = lo g cos x
f ′ ( x ) = − tan x
f ′ ′ ( x ) = − sec 2 x ⟹ concave for [ 0 , 2 π ] .
By Jensen, f ( A ) + f ( B ) + f ( C ) ≤ 3 f ( 3 A + B + C ) = 3 f ( 6 0 ∘ ) = lo g 8 1 and we have proven the Lemma.
( y x ) 2 + ( z y ) 2 + ( x z ) 2 + x y z Let ( a , b , c ) = ( x 2 , y 2 , z 2 ) and notice that a b c ≤ 1 since it all goes down to cos A cos B cos C ≤ 8 1
This implies that ( y x ) 2 + ( z y ) 2 + ( x z ) 2 + x y z ≥ x 2 + y 2 + z 2 + x y z = 4
from our first identity. Equality holds when A = B = C = 6 0 ∘