Minimize The Integral

Calculus Level 5

Consider an Integral

I = 0 π / 2 cos x k x d x . I\quad =\quad \int _{ 0 }^{ { \pi }/{ 2 } }{ \left| \cos { x } -kx \right| } dx.

If for some positive Real value of k this integral can be minimized .

if that value of k is expressed as

a π ( cos ( π a ) ) . \quad \cfrac { \sqrt { a } }{ \pi } (\cos { (\cfrac { \pi }{ \sqrt { a } } ) } ).

Then Find a 2 { a }^{ 2 } ??


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Oct 29, 2014

I = 0 π / 2 cos x k x d x I\quad =\quad \int _{ 0 }^{ { \pi }/{ 2 } }{ \left| \cos { x } -kx \right| } dx .

Diagram Diagram Let point P ( α , cos α ) P(\alpha ,\cos { \alpha } ) on curve y = c o s ( x ) y=cos(x)

So

k α = cos α k = cos α α \\ \quad \quad k\alpha \quad =\quad \cos { \alpha } \\ \quad \boxed { k\quad \quad =\quad \quad \cfrac { \cos { \alpha } }{ \alpha } } .

I = 0 α ( cos x k x ) d x + α π / 2 ( k x cos x ) d x I\quad =\quad \int _{ 0 }^{ \alpha }{ (\cos { x } -kx) } dx\quad +\quad \int _{ \alpha }^{ { \pi }/{ 2 } }{ (kx } -\cos { x) } dx .

Now after integrating it we get function of I I in term's of α \alpha

I ( α ) = 2 sin α α cos α 2 + cos α 2 α ( π 2 4 α 2 ) 1 I(\alpha )\quad =\quad 2\sin { \alpha } \quad -\quad \cfrac { \alpha \cos { \alpha } }{ 2 } \quad +\quad \cfrac { \cos { \alpha } }{ 2\alpha } (\cfrac { { \pi }^{ 2 } }{ 4 } \quad -\quad { \alpha }^{ 2 })\quad -1 .

d [ I ( α ) ] d α = 0 \cfrac { d[I(\alpha )] }{ d\alpha } \quad =\quad 0 .

d [ I ( α ) ] d α = 0 tan ( α ) = 1 α × ( r e j e c t e d α > 0 & tan ( α ) > 0 ) o r α = π 8 \cfrac { d[I(\alpha )] }{ d\alpha } \quad =\quad 0\\ \\ \tan { (\alpha ) } =\quad \cfrac { -1 }{ \alpha } \quad \quad \times \quad (\quad rejected\quad \because \quad \alpha \quad >\quad 0\quad \quad \& \quad \tan { (\alpha ) } >\quad 0\quad )\\ \\ \quad or\quad \\ \\ \boxed { \alpha \quad =\quad \quad \cfrac { \pi }{ \sqrt { 8 } } } .

k = 8 π ( cos ( π 8 ) ) a = 8 a 2 = 64 \Rightarrow \quad k\quad =\quad \cfrac { \sqrt { 8 } }{ \pi } (\cos { (\cfrac { \pi }{ \sqrt { 8 } } ) } )\\ \Rightarrow \quad a\quad =\quad 8\\ \Rightarrow { \quad a }^{ 2 }\quad =\quad 64\quad \\ \\ .

Q.E.D

It's a beautiful question , Deepanshu bhaiyya

A Former Brilliant Member - 6 years, 4 months ago

I repeatedly entered the value of a a instead of a 2 {a}^{2} and got it wrong

Ronak Agarwal - 6 years, 7 months ago

Log in to reply

Yeah I got it wrong in first attempt too for the same thing but realized it and got it correct in the second attempt

Ayush Garg - 6 years, 7 months ago

Same thing... got frustrated and entered 8 all the 3 times

Akul Agrawal - 5 years, 7 months ago
Mvs Saketh
Oct 29, 2014

Consider the equation, 0 π 2 c o s x k x d x \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left| cosx\quad -\quad kx \right| \quad dx }

Let us assume it is negative from 0 to some h and then becomes positive from h to π 2 \frac { \pi }{ 2 }

Then it can be split as

0 h ( k x c o s x ) d x + h π 2 ( c o s x k x ) d x \int _{ 0 }^{ h }{ (kx-cosx)\quad dx } +\int _{ h }^{ \frac { \pi }{ 2 } }{ (cosx-kx)dx } \\ \\ \\

Thus effectively removing modulus sign,

now differentiating equation with respect to k and equating it to 0, (for extrema)

(to determine whether its maxima or minima, check yourself)

We get

0 h ( x ) d x + h π 2 ( x ) d x \int _{ 0 }^{ h }{ (x)\quad dx } +\int _{ h }^{ \frac { \pi }{ 2 } }{ (-x)dx }

which gives

h = π 8 h=\frac { \pi }{ \sqrt { 8 } } \\

Now at x=h, cosx-kx=0

so

k = c o s ( h ) h = 8 π c o s ( π 8 ) k=\frac { cos(h) }{ h } =\frac { \sqrt { 8 } }{ \pi } cos(\frac { \pi }{ \sqrt { 8 } } )\\ \\

which a=8 and its square as 64

Oh That's cool. atleast 5 times better than me . Thanks for sharing with us

Deepanshu Gupta - 6 years, 7 months ago

Log in to reply

Its fairly equivalent,,, but yes shorter :)

Mvs Saketh - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...