Maximize this

Algebra Level 4

x + 4 1 x 2 \sqrt{x}+4\sqrt{1-\frac{x}{2}}

What is the maximum value of the above expression?


The answer is 4.24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let y = x + 4 1 x 2 = x + 16 8 x y=\sqrt{x}+4\sqrt{1-\frac{x}{2}} = \sqrt{x}+\sqrt{16-8x} Differentiating, we get

d y d x = 1 2 x 4 16 8 x = 0 \frac{dy}{dx}=\frac{1}{2\sqrt{x}}-\frac{4}{\sqrt{16-8x}}=0

Solving, we get x = 2 9 x=\frac{2}{9} . Substituting in, we get the answer.

P C
Jan 13, 2016

The condition of x is x [ 0 ; 2 ] x\in[0;2] Called the expression is A, we see that A = x + 4 1 x 2 = x + 2 3 . 2 x A=\sqrt{x}+4\sqrt{1-\frac{x}{2}}=\sqrt{x}+\sqrt{2^3}.\sqrt{2-x} Using Cauchy-Schwarz inequality, we have A 2 ( 1 + 8 ) ( x + 2 x ) A^2\leq(1+8)(x+2-x) A 2 18 \Leftrightarrow A^2\leq 18 A 3 2 4.24 \Leftrightarrow A\leq3\sqrt{2}\approx 4.24 The equality holds when x = 2 9 x=\frac{2}{9}

Using Cauchy-Schwarz inequality as follows:

( x + 2 1 x 2 + 2 1 x 2 ) 2 ( 1 + 2 2 + 2 2 ) ( x + 1 x 2 + 1 x 2 ) = 18 x + 4 1 x 2 18 4.243 \begin{aligned} \left(\sqrt x + 2 \sqrt{1-\frac x2} + 2 \sqrt{1-\frac x2} \right)^2 & \le \left(1+2^2+2^2 \right) \left(x + 1-\frac x2 + 1 - \frac x2 \right) = 18 \\ \implies \sqrt x + 4 \sqrt{1-\frac x2} & \le \sqrt {18} \approx \boxed{4.243} \end{aligned}

Equality occurs when x = 2 9 x = \dfrac 29 .

Most precise solution.

Ojas Singh Malhi - 3 years, 8 months ago

did the same way

I Gede Arya Raditya Parameswara - 3 years, 7 months ago
Boi (보이)
Oct 12, 2017

x = 2 sin 2 θ . ( 0 θ π 2 ) x=2\sin^2\theta.~\left(0\le \theta \le \dfrac{\pi}{2}\right)

x + 4 1 x 2 = 2 sin θ + 4 cos θ = 18 sin ( θ + k ) . \sqrt{x}+4\sqrt{1-\dfrac{x}{2}} = \sqrt{2}\sin\theta+4\cos\theta = \sqrt{18}\sin(\theta+k).

The maximum is 3 2 . \boxed{3\sqrt{2}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...