Minimizing β \beta

Algebra Level 5

Let α \alpha and β \beta be positive integers such that

43 197 < α β < 17 77 \large \frac{43}{197}<\frac{\alpha}{\beta}< \frac{17}{77}

Find the minimum possible value of β \beta .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First our motivation is to provide an integer bound on α \alpha and β \beta .

77 17 < β α < 197 43 \frac{77}{17} < \frac{\beta}{\alpha} < \frac{197}{43} 4 + 9 17 < β α < 4 + 25 43 4 +\frac{9}{17} < \frac{\beta}{\alpha} < 4+\frac{25}{43} ---[1]

From this relation we can say that 4 < β α < 5 4 < \frac{\beta}{\alpha} < 5 . Hence clearly β > 4 α \beta > 4\alpha ,so we can state that β = 4 α + γ \beta = 4\alpha + \gamma , where 0 < γ < α 0<\gamma < \alpha .

Putting this value of β \beta in (1) we get, 4 + 9 17 < 4 α + γ α < 4 + 25 43 4 +\frac{9}{17} < \frac{4\alpha + \gamma}{\alpha} < 4 +\frac{25}{43} 4 + 9 17 < 4 + γ α < 4 + 25 43 4 +\frac{9}{17} < 4+\frac{ \gamma}{\alpha} < 4 +\frac{25}{43} 9 17 < γ α < 25 43 \frac{9}{17} < \frac{ \gamma}{\alpha} < \frac{25}{43} 17 9 < α γ < 43 25 \frac{17}{9} < \frac{ \alpha}{\gamma} < \frac{43}{25} 17 9 γ < α < 43 25 γ \frac{17}{9}\gamma < \alpha < \frac{43}{25}\gamma

Now to minimize the value of β \beta ,we will select the smallest value of γ \gamma for which α \alpha is an integer.

If we put γ = 1 \gamma = 1 ,we get 17 9 < α < 43 25 \frac{17}{9} < \alpha < \frac{43}{25} hence we have no possible values.

If we put γ = 2 \gamma = 2 ,we get 3 11 25 < α < 3 7 9 3\frac{11}{25} < \alpha < 3\frac{7}{9} hence we have no possible values.

If we put γ = 3 \gamma = 3 ,we get 5 4 9 < α < 5 2 3 5\frac{4}{9} < \alpha < 5\frac{2}{3} hence we have no possible values.

If we put γ = 4 \gamma = 4 ,we get 6 12 25 < α < 7 5 9 6\frac{12}{25} < \alpha < 7\frac{5}{9} hence α = 7 \alpha = 7 is a possible value and hence β = 4 α + γ = 28 + 4 = 32 \beta = 4\alpha + \gamma = 28 + 4 = 32 .

We can also see that this is the minimum possible value since if x 5 x \ge 5 , α > 43 25 x 43 5 > 8 \alpha > \frac{43}{25}x \ge \frac{43}{5} > 8 . hence β > 32 \beta > 32 .

So we can conclude that the minimum possible value of β \beta is 32 \boxed{32}

You typed '[' instead of '\'.

Atomsky Jahid - 2 years, 11 months ago

Log in to reply

Ok, thanks for informing me.

Harsh Shrivastava - 2 years, 11 months ago
Suhas Sheikh
Jul 1, 2018

Past INMO question

You're not helping anyone with this.

Atomsky Jahid - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...