Minimizing Integral

Calculus Level 4

0 π sin x A x d x \large \int_0^\pi | \sin x - Ax | \, dx

Find the value of A A such that the value of the integral above is minimized. If the value of A A can be expressed as P π Q sin ( π R ) , \dfrac{\sqrt P}{\pi^Q} \sin \left ( \dfrac{\pi}{\sqrt R} \right) , submit your answer as P + Q + R P+Q+R .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Mar 13, 2018

I ( t ) = 0 π sin x A x d x sin t = A t , t ( π 2 , π ) = 0 t ( sin x A x ) d x + t π ( A x sin x ) d x = A π 2 2 A t 2 2 cos t A = sin t t = π 2 sin t 2 t t sin t 2 cos t I ( t ) = ( 2 t π ) ( 2 t + π ) ( sin t t cos t ) 2 t 2 \begin{aligned} I(t)&=\int_0^\pi|\sin x-Ax|dx&\small\color{#3D99F6}\sin t=At,t\in\left(\frac\pi 2,\pi\right) \\&=\int_0^t(\sin x-Ax)dx+\int_t^\pi(Ax-\sin x)dx \\&=\frac{A\pi^2}2-At^2-2\cos t&\small\color{#3D99F6}A=\frac{\sin t}t \\&=\frac{\pi^2\sin t}{2t}-t\sin t-2\cos t \\\\I'(t)&=\frac{(\sqrt 2t-\pi)(\sqrt 2t+\pi)(\sin t-t\cos t)}{2t^2} \end{aligned}

Therefore, I ( t ) I(t) has a minimum value when I ( t ) = 0 I'(t)=0 , that is,

t = π 2 , A = 2 π sin ( π 2 ) , \begin{aligned} t&=\frac\pi{\sqrt 2},\\ A&=\frac{\sqrt 2}\pi\sin\left(\frac\pi{\sqrt 2}\right), \end{aligned}

making the answer 2 + 1 + 2 = 5 2+1+2=\boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...