This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Lagrange multipliers and define F ( x , y , z , λ ) = x 2 + 2 y 2 + 3 z 2 + x y + 3 y z + 2 z x + 7 x − λ ( x + 2 y + 4 z − 1 0 ) . Taking partial derivatives and equating them to zero, we have:
∂ x ∂ F = 2 x + y + 2 z − λ ∂ y ∂ F = x + 4 y + 3 z − 2 λ ∂ z ∂ F = 2 x + 3 y + 6 z + 7 − 4 λ ∂ λ ∂ F = − x − 2 y − 4 z + 1 0 ⟹ 2 x + y + 2 z = λ ⟹ x + 4 y + 3 z = 2 λ ⟹ 2 x + 3 y + 6 z + 7 = 4 λ ⟹ x + 2 y + 4 z = 1 0 . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) . . . ( 4 )
From 2 × ( 2 ) − ( 3 ) : 5 y − 7 = 0 ⟹ y = 5 7 .
From 2 × ( 1 ) − ( 2 ) : 3 x − 2 y + z = 0 . . . ( 5 )
From 4 × ( 5 ) − ( 4 ) : 1 1 x − 1 0 y = − 1 0 ⟹ 1 1 x = 1 0 y − 1 0 ⟹ x = 1 1 4
From ( 5 ) : 1 1 1 2 − 5 1 4 + z = 0 ⟹ z = 5 5 9 4
Therefore min ( F ( x , y , z , 0 ) ) = F ( 1 1 4 , 5 7 , 5 5 9 4 , 0 ) = 5 5 1 8 5 4 ≈ 3 3 . 7 . We can check that it is a minimum, since F ( 1 0 , 0 , 0 , 0 ) = 1 0 0 > 3 3 . 7 as ( x , y , z ) = ( 1 0 , 0 , 0 ) satisfy x + 2 y + 4 z = 1 0