Minimizing over a plane

Calculus Level 4

If x + 2 y + 4 z = 10 x + 2 y + 4 z = 10 , what is the minimum of x 2 + 2 y 2 + 3 z 2 + x y + 2 x z + 3 y z + 7 z x^2 + 2 y^2 + 3 z^2 + xy + 2 x z + 3 y z + 7 z ?


The answer is 33.71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using Lagrange multipliers and define F ( x , y , z , λ ) = x 2 + 2 y 2 + 3 z 2 + x y + 3 y z + 2 z x + 7 x λ ( x + 2 y + 4 z 10 ) F(x,y,z,\lambda) = x^2 + 2y^2 + 3z^2 + xy + 3yz + 2zx + 7x - \lambda (x+2y+4z - 10) . Taking partial derivatives and equating them to zero, we have:

F x = 2 x + y + 2 z λ 2 x + y + 2 z = λ . . . ( 1 ) F y = x + 4 y + 3 z 2 λ x + 4 y + 3 z = 2 λ . . . ( 2 ) F z = 2 x + 3 y + 6 z + 7 4 λ 2 x + 3 y + 6 z + 7 = 4 λ . . . ( 3 ) F λ = x 2 y 4 z + 10 x + 2 y + 4 z = 10 . . . ( 4 ) \begin{array} {lll} \dfrac {\partial F}{\partial x} = 2x + y + 2z - \lambda & \implies 2x + y + 2z = \lambda & ...(1) \\ \dfrac {\partial F}{\partial y} = x + 4y + 3z - 2\lambda & \implies x + 4y + 3z = 2 \lambda & ...(2) \\ \dfrac {\partial F}{\partial z} = 2x + 3y + 6z + 7 - 4\lambda & \implies 2x + 3y + 6z + 7 = 4\lambda & ...(3) \\ \dfrac {\partial F}{\partial \lambda} = - x - 2y - 4z + 10 & \implies x + 2y + 4z = 10 & ...(4) \end{array}

From 2 × ( 2 ) ( 3 ) : 5 y 7 = 0 y = 7 5 2\times (2) - (3): \ 5y - 7 = 0 \implies y = \dfrac 75 .

From 2 × ( 1 ) ( 2 ) : 3 x 2 y + z = 0 . . . ( 5 ) 2 \times (1) - (2): \ 3x - 2y + z = 0 \ \ ...(5)

From 4 × ( 5 ) ( 4 ) : 11 x 10 y = 10 11 x = 10 y 10 x = 4 11 4 \times (5) - (4): \ 11x - 10y = - 10 \implies 11 x = 10y - 10 \implies x = \dfrac 4{11}

From ( 5 ) : 12 11 14 5 + z = 0 z = 94 55 (5): \ \dfrac {12}{11} - \dfrac {14}5 + z = 0 \implies z = \dfrac {94}{55}

Therefore min ( F ( x , y , z , 0 ) ) = F ( 4 11 , 7 5 , 94 55 , 0 ) = 1854 55 33.7 \min (F(x,y,z,0)) = F \left(\dfrac 4{11}, \dfrac 75, \dfrac {94}{55}, 0 \right) = \dfrac {1854}{55} \approx \boxed{33.7} . We can check that it is a minimum, since F ( 10 , 0 , 0 , 0 ) = 100 > 33.7 F(10,0,0,0) = 100 > 33.7 as ( x , y , z ) = ( 10 , 0 , 0 ) (x,y,z) = (10,0,0) satisfy x + 2 y + 4 z = 10 x+2y+4z = 10

Almost perfect. You got to show that the Hessian matrix is positive definite and so, the critical point that you've found is a minimum point.

Pi Han Goh - 9 months, 1 week ago

Log in to reply

Yes, I know. Because you told me before. But I am too old to remember what matrix was it. Thanks, pal.

Chew-Seong Cheong - 9 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...