If 4 ( x − 2 ) 2 + 9 ( y − 3 ) 2 + 2 5 ( z − 8 ) 2 = 1 , what the minimum of 5 x + 1 0 y + 1 5 z ?
Hint: You can use the Cauchy-Schwarz inequality here.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What are the values of x , y , z when this minimum value occur?
Log in to reply
Nevermind, got it. Minimum value occurs when 2 x − 2 = 9 y − 3 = 3 7 . 5 z − 8 ⇔ ( x , y , z ) = ( 2 − 2 6 5 4 , 3 − 2 6 5 1 8 , 8 − 2 6 5 7 5 )
Same as before. Let
x = 2 + 2 cos α cos β , y = 3 + 3 cos α sin β , z = 8 + 5 sin α .
Then 5 x + 1 0 y + 1 5 z ≥ 5 ( 3 2 − 4 0 cos α + 1 5 sin α ) ≥ 5 ( 3 2 − 2 6 5 ) ≈ 7 8 . 6 0 6 .
Therefore the minimum value of 5 x + 1 0 y + 1 5 z is 7 8 . 6 0 6 .
The minimum is attained when
sin ( α − tan − 1 1 5 4 0 ) = − 1 ,
⟹ sin α = − 2 6 5 1 5 ,
cos α = 2 6 5 4 0
sin ( β + tan − 1 3 1 ) = − 1
⟹ sin β = − 1 0 3 ,
cos β = − 1 0 1
Substituting values we get
x = 2 6 5 2 ( 2 6 5 − 2 ) ≈ 1 . 7 5 4
y = 2 6 5 3 ( 2 6 5 − 6 ) ≈ 1 . 8 9 4
z = 2 6 5 8 2 6 5 − 7 5 ≈ 3 . 3 9 3 .
Problem Loading...
Note Loading...
Set Loading...
f = 5 x + 1 0 y + 1 5 z = 5 ( x − 2 ) + 1 0 + 1 0 ( y − 3 ) + 3 0 + 1 5 ( z − 8 ) + 1 2 0 = 1 0 2 ( x − 2 ) + 3 0 3 ( y − 3 ) + 7 5 5 ( z − 8 ) + 1 6 0
From Cauchy-Schwarz inequality,
f − 1 6 0 ≥ − 1 0 2 + 3 0 2 + 7 5 2 ( 1 )
Thus f min = 1 6 0 − 6 6 2 5 = 7 8 . 6 0 6