Minimizing over an ellipsoid

Algebra Level 3

If ( x 2 ) 2 4 + ( y 3 ) 2 9 + ( z 8 ) 2 25 = 1 \dfrac{(x - 2)^2}{ 4} + \dfrac{(y - 3)^2}{9} + \dfrac{(z - 8)^2}{ 25} = 1 , what the minimum of 5 x + 10 y + 15 z 5 x + 10 y + 15 z ?

Hint: You can use the Cauchy-Schwarz inequality here.


The answer is 78.606.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Sep 6, 2020

f = 5 x + 10 y + 15 z = 5 ( x 2 ) + 10 + 10 ( y 3 ) + 30 + 15 ( z 8 ) + 120 = 10 ( x 2 ) 2 + 30 ( y 3 ) 3 + 75 ( z 8 ) 5 + 160 f = 5 x + 10 y + 15 z = 5 (x - 2) + 10 + 10 (y - 3) + 30 + 15 (z - 8) + 120 = 10 \dfrac{(x - 2)}{2} + 30 \dfrac{(y-3)}{3} + 75 \dfrac{(z - 8)}{5 }+ 160

From Cauchy-Schwarz inequality,

f 160 1 0 2 + 3 0 2 + 7 5 2 ( 1 ) f - 160 \ge - \sqrt{ 10^2 + 30^2 + 75^2} (1)

Thus f min = 160 6625 = 78.606 f_{\text{min} } = 160 - \sqrt{6625} = 78.606

What are the values of x , y , z x,y,z when this minimum value occur?

Pi Han Goh - 9 months, 1 week ago

Log in to reply

Nevermind, got it. Minimum value occurs when x 2 2 = y 3 9 = z 8 37.5 ( x , y , z ) = ( 2 4 265 , 3 18 265 , 8 75 265 ) \frac{x-2}2 = \frac{y-3}9 = \frac{z-8}{37.5} \Leftrightarrow (x,y,z) = \left( 2 - \frac4{\sqrt{265}}, 3 - \frac{18}{\sqrt{265}}, 8 - \frac{75}{\sqrt{265}} \right)

Pi Han Goh - 9 months, 1 week ago

Same as before. Let

x = 2 + 2 cos α cos β , y = 3 + 3 cos α sin β , z = 8 + 5 sin α x=2+2\cos α\cos β,y=3+3\cos α\sin β,z=8+5\sin α .

Then 5 x + 10 y + 15 z 5 ( 32 40 cos α + 15 sin α ) 5 ( 32 265 ) 78.606 5x+10y+15z\geq 5(32-\sqrt {40}\cos α+15\sin α)\geq 5(32-\sqrt {265})\approx 78.606 .

Therefore the minimum value of 5 x + 10 y + 15 z 5x+10y+15z is 78.606 \boxed {78.606} .

The minimum is attained when

sin ( α tan 1 40 15 ) = 1 \sin \left (α-\tan^{-1} \frac{\sqrt {40}}{15}\right ) =-1 ,

sin α = 15 265 \implies \sin α=-\dfrac {15}{\sqrt {265}} ,

cos α = 40 265 \cos α=\sqrt {\frac{40}{265}}

sin ( β + tan 1 1 3 ) = 1 \sin \left (β+\tan{-1} \frac 13\right )=-1

sin β = 3 10 \implies \sin β=-\dfrac {3}{\sqrt {10}} ,

cos β = 1 10 \cos β=-\dfrac {1}{\sqrt {10}}

Substituting values we get

x = 2 ( 265 2 ) 265 1.754 x=\dfrac {2(\sqrt {265}-2)}{\sqrt {265}}\approx 1.754

y = 3 ( 265 6 ) 265 1.894 y=\dfrac {3(\sqrt {265}-6)}{\sqrt {265}}\approx 1.894

z = 8 265 75 265 3.393 z=\dfrac {8\sqrt {265}-75}{\sqrt {265}}\approx 3.393 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...