Minimizing Tangents!

Geometry Level 4

a 2 4 tan A + a tan B + a 2 + 4 tan C = 6 a \sqrt{a^2-4}\tan{A} + a\tan{B} + \sqrt{a^2+4}\tan{C} = 6a

If a a is a real constant and A , B , C A,B,C are variable angles such that the equation above is fulfilled, find the least value of tan 2 A + tan 2 B + tan 2 C \tan^{2}A + \tan^{2}B +\tan^{2}C .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vraj Mehta
Apr 9, 2015

With The Given Equation and The Required Function,

Lets Assume a Vectors α and β \alpha \space \text{and} \space \beta such that,

α = tan A i ^ + tan B j ^ + tan C k ^ \vec{\alpha} = \tan{A}\hat{i} + \tan{B}\hat{j} + \tan{C}\hat{k}

and

β = a 2 4 i ^ + a j ^ + a 2 + 4 k ^ \vec{\beta} = \sqrt{a^2-4}\hat{i} + a\hat{j} + \sqrt{a^2+4}\hat{k}

Now, We Need to Minimize α 2 \textbf{Minimize} |\vec{\alpha}|^{2}

And Given That

α β \vec{\alpha} \cdot \vec{\beta} = a 2 4 tan A + a tan B + a 2 + 4 tan C \sqrt{a^2-4}\tan{A} + a\tan{B} + \sqrt{a^2+4}\tan{C}

And

α β \vec{\alpha} \cdot \vec{\beta} = 6 a 6a

Now,

α β \vec{\alpha} \cdot \vec{\beta} = β α cos θ |\vec{\beta}||\vec{\alpha}|\cos{\theta}

So,

β α cos θ |\vec{\beta}||\vec{\alpha}|\cos{\theta} = 6 a 6a

And β = 3 a |\vec{\beta}| = \sqrt{3}a

So,

α |\vec{\alpha}| = 6 3 cos θ \dfrac{6}{\sqrt{3}\cos{\theta}}

And As cos θ \cos{\theta} Becomes Maximum α |\vec{\alpha}| becomes minimum

Therefore,

α M i n |\vec{\alpha}|_{Min} = 2 3 2\sqrt{3}

And

α M i n 2 |\vec{\alpha}|^{2}_{Min} = 12 \boxed{12}

this is ask in my recent test paper .....so i solved in 5 sec

Karan Shekhawat - 6 years, 2 months ago
Spandan Senapati
Mar 18, 2017

Using Cauchy Schwartz Inequality gives ( 6 a ) 2 = < ( ( t a n A ) 2 + ( t a n B ) 2 + ( t a n C ) 2 ) ( a 2 4 + a 2 + a 2 + 4 ) (6a)^2=<((tanA)^2+(tanB)^2+(tanC)^2)(a^2-4+a^2+a^2+4) So the required minima is 12 12

Chew-Seong Cheong
Mar 21, 2017

a 2 4 tan A + a tan B + a 2 + 4 tan C = 6 a Dividing both sides by a 1 4 a 2 tan A + tan B + 1 + 4 a 2 tan C = 6 \begin{aligned} \sqrt{a^2-4}\tan A + a \tan B + \sqrt{a^2+4} \tan C & = 6a & \small \color{#3D99F6} \text{Dividing both sides by }a \\ \sqrt{1- \frac 4{a^2}} \tan A + \tan B + \sqrt{1+\frac 4{a^2}} \tan C & = 6 \end{aligned}

Using Cauchy-Schwarz inequality , we have:

( 1 4 a 2 tan A + tan B + 1 + 4 a 2 tan C ) 2 ( 1 4 a 2 + 1 + 1 + 4 a 2 ) ( tan 2 A + tan 2 B + tan 2 C ) 36 3 ( tan 2 A + tan 2 B + tan 2 C ) tan 2 A + tan 2 B + tan 2 C 12 \begin{aligned} \left(\sqrt{1- \frac 4{a^2}} \tan A + \tan B + \sqrt{1+\frac 4{a^2}} \tan C \right)^2 & \le \left(1- \frac 4{a^2} + 1 + 1+\frac 4{a^2} \right) \left( \tan^2 A + \tan^2 B + \tan^2 C \right) \\ 36 & \le 3 \left( \tan^2 A + \tan^2 B + \tan^2 C \right) \\ \implies \tan^2 A + \tan^2 B + \tan^2 C & \ge \boxed{12} \end{aligned}

Equality occurs when tan A 1 4 a 2 = tan B = tan C 1 + 4 a 2 \dfrac {\tan A}{\sqrt{1- \frac 4{a^2}}} = \tan B = \dfrac {\tan C}{\sqrt{1+ \frac 4{a^2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...