What is the minimum value of ?
Notation : denotes the absolute value function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Absolute Value Inequalities - 3 or more Linear Terms
Absolute value functions can be written as piecewise functions:
∣ x − a ∣ = { x − x x ≥ 0 x < 0
We can rewrite each absolute function above as piecewise functions:
∣ x + 2 ∣ = { x + 2 − x − 2 x ≥ − 2 x < − 2
∣ x + 3 ∣ = { x + 3 − x − 3 x ≥ − 3 x < − 3
∣ x + 4 ∣ = { x + 4 − x − 4 x ≥ − 4 x < − 4
Combine all 3 of them, and we have 4 different cases:
∣ x + 2 ∣ + ∣ x + 3 ∣ + ∣ x + 4 ∣ = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 3 x + 9 x + 5 − x − 1 − 3 x − 9 x ≥ − 2 − 3 ≤ x < − 2 − 4 ≤ x < − 3 x < − 4
The range for each case is:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 3 x + 9 x + 5 − x − 1 − 3 x − 9 x ≥ − 2 − 3 ≤ x < − 2 − 4 ≤ x < − 3 x < − 4 ⟹ [ 3 , ∞ ) ⟹ [ 2 , 3 ) ⟹ ( 2 , 3 ] ⟹ ( 3 , ∞ )
Therefore, the range of ∣ x + 2 ∣ + ∣ x + 3 ∣ + ∣ x + 4 ∣ is [ 2 , ∞ )
The minimum value of the expression is 2 , which occurs at x = − 3