Minimum

Geometry Level 3

Consider a triangle with the area S S , and let a a , b b , and c c be the side lengths of the triangle.

a 2 + 4 b 2 + 12 c 2 \large a^2+4b^2+12c^2

If the minimum value of the expression above can be written as n × S n \times S , where n n is a positive integer, then find n n .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Sep 23, 2017

The area of the triangle is given by,

S = 1 2 a b sin θ S = \dfrac{1}{2} a b \sin \theta

where θ \theta is the angle between sides a a and b b . It follows that

b = 2 S a sin θ b = \dfrac{ 2 S }{ a \sin \theta}

Also, we have from the Law of Cosines,

c 2 = a 2 + b 2 2 a b cos θ = a 2 + 4 S 2 a 2 sin 2 θ 4 S cot θ c^2 = a^2 + b^2 - 2 a b \cos \theta = a^2 + \dfrac{ 4 S^2 }{a^2 \sin^2 \theta} - 4 S \cot \theta

Therefore,

f = a 2 + 4 b 2 + 12 c 2 = a 2 + 16 S 2 a 2 sin 2 θ + 12 ( a 2 + 4 S 2 a 2 sin 2 θ 4 S cot θ ) f = a^2 + 4 b^2 + 12 c^2 = a^2 + \dfrac{16 S^2}{a^2 \sin^2 \theta} + 12 (a^2 + \dfrac{ 4 S^2 }{a^2 \sin^2 \theta} - 4 S \cot \theta)

Simplifying,

f = 13 a 2 + 64 S 2 a 2 sin 2 θ 48 S cot θ f = 13 a^2 + \dfrac{64 S^2 }{ a^2 \sin^2 \theta} - 48 S \cot \theta

Differentiating f f with respect to a 2 a^2 and with respect to θ \theta yields:

f a 2 = 13 64 S 2 sin 2 θ ( 1 a 4 ) = 0 \dfrac{\partial f}{\partial a^2} = 13 - \dfrac{64 S^2}{ \sin^2 \theta} (\dfrac{1}{a^4}) = 0

From which, a 2 = 8 S 13 sin θ a^2 = \dfrac{ 8 S }{ \sqrt{13} \sin \theta }

And,

f θ = 64 S 2 a 2 ( 2 cot θ ) ( csc 2 θ ) 48 S ( c s c 2 θ ) = 0 \dfrac{\partial f}{\partial \theta} = \dfrac{ 64 S^2 }{ a^2 } (2 \cot \theta) (- \csc^2 \theta) - 48 S ( - csc^2 \theta ) = 0

From which, 8 S a 2 cot θ = 3 \dfrac{ 8 S }{a^2} \cot \theta = 3 . Substituting this in the previous equation, we get

8 S a 2 = 13 sin θ = 3 tan θ \dfrac{8 S}{ a^2 } = \sqrt{13} \sin \theta = 3 \tan \theta

Therefore, cos θ = 3 13 \cos \theta = \dfrac{3}{\sqrt{13} } , and it follows from this that sin θ = 2 13 \sin \theta = \dfrac{2}{\sqrt{13}}

Therefore, a 2 = 8 S 13 sin θ = 4 S a^2 = \dfrac{ 8 S }{ \sqrt{13} \sin \theta } = 4 S

Substituting this in the expression for the function f f ,

f = 13 a 2 + 64 S 2 a 2 sin 2 θ 48 S cot θ = 13 ( 4 S ) + 16 S ( 13 4 ) 48 S ( 3 2 ) = 52 S + 52 S 72 S = 104 S 72 S = 32 S \begin{aligned} f &= 13 a^2 + \dfrac{64 S^2 }{ a^2 \sin^2 \theta} - 48 S \cot \theta \\ &= 13 (4 S) + 16 S \cdot (\dfrac{13}{4} ) - 48 S \cdot (\dfrac{3}{2}) \\ &= 52 S + 52 S - 72 S = 104 S - 72 S = 32 S \end{aligned}

Therefore, the answer is 32 \boxed{32}

Thanx for posting the solution.

Vilakshan Gupta - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...