Two reals satisfy the conditions below.
Find the minimum of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x + y = t and x − y = s .
You see that t + s > 0 and t − s ≥ 0 . Therefore, t > 0 .
From x 2 − y 2 = t s ≥ 1 , we get s ≥ t 1 .
a x + a y = a t , b x − b y = b s . Then ( a + b ) x + ( a − b ) y = a t + b s .
We want the left side to become 5 x − 3 y .
a = 1 , b = 4 .
Therefore,
5 x − 3 y = t + 4 s ≥ t + t 4 ≥ 2 ⋅ t ⋅ t 4 = 4 ,
with equality achieved when t = 2 , s = 2 1 , which means x = 4 5 , y = 4 3 .