Minimum distance

Algebra Level 4

For all complex numbers z 1 , z 2 z_1,z_2 satisfying z 1 = 12 |z_1|=12 and z 2 3 4 i = 5 |z_2-3-4i|=5 , find the minimum value of z 1 z 2 . |z_1-z_2|.


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anandhu Raj
Jan 29, 2015

z 1 = 12 z 1 l i e s o n a c i r c l e w i t h r a d i u s 12 u n i t s a n d c e n t e r ( 0 , 0 ) |{ z }_{ 1 }|=12\quad \Rightarrow { z }_{ 1 }\quad lies\quad on\quad a\quad circle\quad with\quad radius\quad 12\quad units\quad and\quad center(0,0)

z 2 3 4 i = 5 z 2 l i e s o n a c i r c l e w i t h r a d i u s 5 u n i t s a n d c e n t e r ( 3 , 4 ) |{ z }_{ 2 }-3-4i|=5\quad \Rightarrow { z }_{ 2 }\quad lies\quad on\quad a\quad circle\quad with\quad radius\quad 5\quad units\quad and\quad center(3,4)

Therefore minimum value of z 1 z 2 = 2 u n i t s \boxed{|{ z }_{ 1 }-{ z }_{ 2 }|=2\quad units}

Nice and quick geometrical approach to the problem.

Abhishek Chopra - 5 years, 6 months ago
De Silva
Jan 9, 2015

This question is based on reverse triangle inequality z 1 z 2 z 1 z 2 | |z_1| - |z_2| | \leq | z_1 - z_2 |

z 2 ( 3 + 4 i ) = 5 | z_2 - ( 3 + 4i ) | = 5

z 2 3 + 4 i z 2 ( 3 + 4 i ) | | z_2 | - | 3+ 4i | | \leq | z_2 - ( 3 + 4i ) |

z 2 3 + 4 i 5 | | z_2 | - | 3+ 4i | | \leq 5

z 2 5 5 | |z_2| - 5| \leq 5

5 z 2 5 5 -5 \leq |z_2| -5 \leq 5

5 7 z 2 5 7 5 7 -5 -7 \leq | z_2| -5 -7 \leq 5 -7

12 z 2 12 2 -12 \leq |z_2| - 12 \leq -2

12 z 2 z 1 2 c o z i t i s g i v e n t h a t z 1 = 12 -12 \leq |z_2| - |z_1| \leq -2 coz it is given that |z_1| = 12

12 z 1 z 2 2 12 \geq |z_1| - |z_2| \geq 2

12 z 1 z 2 2 12 \geq | |z_1| - |z_2| | \geq 2

so the minimum value of z 1 z 2 | |z_1| - |z_2| | is 2 2 .

According to reverse triangle inequality z 1 z 2 z 1 z 2 | |z_1| - |z_2| | \leq | z_1 - z_2 |

As the minimum value of z 1 z 2 | |z_1| - |z_2| | is 2 2 , the minimum value of z 1 z 2 | z_1 - z_2 | is 2 2 .

Good solution. Please use \leq for "<=" and \geq for ">=", then solution will look prettier.

Sandeep Bhardwaj - 6 years, 5 months ago

Log in to reply

thanks for sharing interesting sums :)

De Silva - 6 years, 5 months ago

Log in to reply

I am editing your solution , then have a look at the syntax.

Sandeep Bhardwaj - 6 years, 5 months ago

distance of Z1 from origin is 12 and distance of 3+4i is from origin is 5..so to minimum the value of distance we take Z1, Z2 and 3+4i is on one st. line..since distance of Z2 from 3+4i is 5.. its distance from Z1 is (12-5)-5=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...