Minimum Distance Between Two Ellipsoids

Calculus Level 5

In the x y z xyz coordinate system, Ellipsoid 1 has its center at point ( 0 , 0 , 0 ) (0,0,0) , and semi-axes coinciding with the vectors ( 1 , 1 , 2 ) (1,1,-2) , ( 1 , 1 , 0 ) (-1,1,0) , and ( 1 , 1 , 1 ) (1,1,1) . Ellipsoid 2 has its center at point ( 3 , 2 , 5 ) (3,2,5) , and semi-axes coinciding with the vectors ( 3 , 0 , 1 ) (3,0,1) , ( 1 , 1 , 3 ) (-1,1,3) , and ( 1 , 10 , 3 ) (-1,-10,3) .

We want to find the minimum distance d d^* , between a point P = ( x 1 , y 1 , z 1 ) P =(x_1, y_1, z_1 ) on Ellipsoid 1 and a point Q = ( x 2 , y 2 , z 2 ) Q = (x_2, y_2, z_2 ) on Ellipsoid 2. If the minimum occurs with P = ( x 1 , y 1 , z 1 ) P^* = ({x_1}^*,{y_1}^*,{z_1}^*) , and Q = ( x 2 , y 2 , z 2 ) Q^* = ( {x_2}^*,{y_2}^*,{z_2}^*) , then report the value of 100 ( x 1 + y 1 + z 1 + x 2 + y 2 + z 2 + d ) \lfloor 100({x_1}^*+{y_1}^*+{z_1}^* + {x_2}^*+{y_2}^*+{z_2}^* + d^* ) \rfloor , where \lfloor \cdot \rfloor is the floor function; for example, 7.6 = 7 \lfloor 7.6 \rfloor = 7 .

Inspiration


The answer is 796.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I checked that the axis sets were orthogonal. They are.

The blue line connects the objects' centers. The red line is the closest approach.

po = { 0 , 0 , 0 } p1 = { 1 , 1 , 2 } p2 = { 1 , 1 , 0 } p3 = { 1 , 1 , 1 } qo = { 3 , 2 , 5 } q1 = { 3 , 0 , 1 } q2 = { 1 , 1 , 3 } q3 = { 1 , 10 , 3 } \text{po}=\{0,0,0\}\\ \text{p1}=\{1,1,-2\}\\ \text{p2}=\{-1,1,0\}\\ \text{p3}=\{1,1,1\}\\\\ \text{qo}=\{3,2,5\}\\ \text{q1}=\{3,0,1\}\\ \text{q2}=\{-1,1,3\}\\ \text{q3}=\{-1,-10,3\}

SquaredEuclideanDistance [ p1 cos ( u1 ) cos ( v1 ) + p2 cos ( u1 ) sin ( v1 ) + p3 sin ( u1 ) + po , q1 cos ( u2 ) cos ( v2 ) + q2 cos ( u2 ) sin ( v2 ) + q3 sin ( u2 ) + qo ] \text{SquaredEuclideanDistance}[\text{p1} \cos (\text{u1}) \cos (\text{v1})+\text{p2} \cos (\text{u1}) \sin (\text{v1})+\text{p3} \sin (\text{u1})+\text{po},\text{q1} \cos (\text{u2}) \cos (\text{v2})+\text{q2} \cos (\text{u2}) \sin (\text{v2})+\text{q3} \sin (\text{u2})+\text{qo}]

The expression:

( cos ( u1 ) cos ( v1 ) cos ( u1 ) sin ( v1 ) + sin ( u1 ) 3 cos ( u2 ) cos ( v2 ) + cos ( u2 ) sin ( v2 ) + sin ( u2 ) 3 ) 2 + ( cos ( u1 ) cos ( v1 ) + cos ( u1 ) sin ( v1 ) + sin ( u1 ) cos ( u2 ) sin ( v2 ) + 10 sin ( u2 ) 2 ) 2 + ( 2 cos ( u1 ) cos ( v1 ) + sin ( u1 ) cos ( u2 ) cos ( v2 ) 3 cos ( u2 ) sin ( v2 ) 3 sin ( u2 ) 5 ) 2 (\cos (\text{u1}) \cos (\text{v1})-\cos (\text{u1}) \sin (\text{v1})+\sin (\text{u1})-3 \cos (\text{u2}) \cos (\text{v2})+\cos (\text{u2}) \sin (\text{v2})+\sin (\text{u2})-3)^2\\ +(\cos (\text{u1}) \cos (\text{v1})+\cos (\text{u1}) \sin (\text{v1})+\sin (\text{u1})-\cos (\text{u2}) \sin (\text{v2})+10 \sin (\text{u2})-2)^2\\ +(-2 \cos (\text{u1}) \cos (\text{v1})+\sin (\text{u1})-\cos (\text{u2}) \cos (\text{v2})-3 \cos (\text{u2}) \sin (\text{v2})-3 \sin (\text{u2})-5)^2

Numerically minimizing that expression over the variables u 1 , v 1 , u 2 u1, v1, u2 and v 2 v2 gives the solution: d = 1.06351294965, u1 = 2.0839598080673123, v1 -= 0.4114553320267924, u2 = 0.09222339116300944\text{ and }v2 -> -2.4581210966219653). The closest point on the smaller object is { 0.61758 , 0.224887 , 1.77112 } \{0.61758,0.224887,1.77112\} . The closest point on the larger object is { 1.22044 , 0.450268 , 2.61777 } \{1.22044,0.450268,2.61777\} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...