Minimum Fraction Product

Algebra Level 3

Given positive reals a , b , c , d a, b, c, d and e e , what is the minimum possible value of ( a + b + c + d + e ) ( 1 a + 4 b + 9 c + 16 d + 25 e ) ? \small (a + b + c + d + e) \left( \frac {1}{a} + \frac {4}{b} + \frac {9} {c} + \frac {16}{d} + \frac {25}{e} \right)?


The answer is 225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Christopher Boo
Apr 5, 2014

By the form of Cauchy-Schwarz Inequality known as Titu's Lemma ,

( a + b + c + d + e ) ( 1 a + 4 b + 9 c + 16 d + 25 e ) \displaystyle {(a+b+c+d+e) \cdot \left(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}+\frac{16}{d}+\frac{25}{e}\right)}

( a 1 a + b 4 b + c 9 c + d 16 d + e 25 e ) 2 \displaystyle{\geq\left(\sqrt{a}\sqrt{\frac{1}{a}}+\sqrt{b}\sqrt{\frac{4}{b}}+\sqrt{c}\sqrt{\frac{9}{c}}+\sqrt{d}\sqrt{\frac{16}{d}}+\sqrt{e}\sqrt{\frac{25}{e}}\right)^2}

( 1 + 2 + 3 + 4 + 5 ) 2 \geq(1+2+3+4+5)^2

225 \geq225

Hence, the minimum value is 225 \boxed{225} .

The equality occurs where 1 a = 2 b = = 5 e , \frac{1}{a} = \frac{2}{b} = \cdots = \frac{5}{e}, so for example we can take a = 1 , b = 2 , c = 3 , d = 4 , e = 5. a=1,b=2,c=3,d=4,e=5.

Did the same way,,, so a=1/a,b=4/b,c=9/c,d=16/d,e=25/e And a,b,c,d,e is positive integer

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

I didn't understand the 2nd step

Hrishikesh Kokane - 2 years, 4 months ago
Sean Ty
Jul 4, 2014

By Cauchy-Schwarz in Engel Form, we have:

( a + b + c + d + e ) ( 1 a + 4 b + 9 c + 16 d + 25 d ) (a+b+c+d+e)(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}+\frac{16}{d}+\frac{25}{d})\geq

( a + b + c + d + e ) ( ( 1 + 4 + 9 + 16 + 25 ) 2 a + b + c + d + e ) (a+b+c+d+e)(\frac{(\sqrt{1}+\sqrt{4}+\sqrt{9}+\sqrt{16}+\sqrt{25})^{2}}{a+b+c+d+e})

And ( 1 + 2 + 3 + 4 + 5 ) 2 = 225 (1+2+3+4+5)^{2}=\boxed{225} .

Mehul Chaturvedi
Dec 18, 2014

By cauchy we have

{ a 1 a + b 4 b + c 9 c + d 16 d + e 25 e } 2 { a 2 + b 2 + c 2 + d 2 + e 2 } { 1 a + 4 b + 9 c + 16 d + 25 e } ( 1 + 2 + 3 + 4 + 5 ) 2 { a + b + c + d + e } { 1 a + 4 b + 9 c + 16 d + 25 e } 225 { a + b + c + d + e } { 1 a + 4 b + 9 c + 16 d + 25 e } \large{\Rightarrow \quad \left\{ { { \sqrt { a } \sqrt { \frac { 1 }{ a } } +\sqrt { b } \sqrt { \frac { 4 }{ b } } +\sqrt { c } \sqrt { \frac { 9 }{ c } } +\sqrt { d } \sqrt { \frac { 16 }{ d } } +\sqrt { e } \sqrt { \frac { 25 }{ e } } } } \right\} ^{ 2 }\\ \le \left\{ { \sqrt { a } }^{ 2 }+{ \sqrt { b } }^{ 2 }+{ \sqrt { c } }^{ 2 }+{ \sqrt { d } }^{ 2 }+{ \sqrt { e } }^{ 2 } \right\} \left\{ \frac { 1 }{ a } +\frac { 4 }{ b } +\frac { 9 }{ c } +\frac { 16 }{ d } +\frac { 25 }{ e } \right\} \\ \therefore \quad \Rightarrow \quad (1+2+3+4+5)^{ 2 }\\ \le \left\{ a+b+c+d+e \right\} \left\{ \frac { 1 }{ a } +\frac { 4 }{ b } +\frac { 9 }{ c } +\frac { 16 }{ d } +\frac { 25 }{ e } \right\} \\ \\ \Rightarrow \quad \boxed{225}\le \left\{ a+b+c+d+e \right\} \left\{ \frac { 1 }{ a } +\frac { 4 }{ b } +\frac { 9 }{ c } +\frac { 16 }{ d } +\frac { 25 }{ e } \right\} }

Nikola Djuric
Nov 30, 2014

Cauchy-Schwarz Buniakowsky is full name of this inequality...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...