Find the minimum value of , where and are real numbers.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Suppose that X = a 2 and Y = b 3 , then suppose that f 1 ( X ) = 2 X 4 + X 2 − 2 X and f 2 ( Y ) = 2 Y 2 − Y − 2 . In order to get the minimum value of f 1 ( X ) + f 2 ( Y ) using algebraic principles and concepts, we can use the vertex form rule in both equations to find our desired values. Applying the completing the square method, we have f 1 ( X ) = 2 X 4 + X 2 − 2 X = 2 X 4 − X 2 + 2 X 2 − 2 X ⟺ f 1 ( X ) = 2 ( X 4 − 1 / 2 X 2 ) + 2 ( X 2 − X ) ⟺ f 1 ( X ) = 2 ( X 4 − 1 / 2 X 2 + 1 / 1 6 ) + 2 ( X 2 − X + 1 / 4 ) − 1 / 8 − 1 / 2 ⟺ f 1 ( X ) = 2 ( X 2 − 1 / 4 ) 2 + 2 ( X − 1 / 2 ) 2 − 5 / 8 and f 2 ( Y ) = 2 Y 2 − Y − 2 = 2 ( Y 2 − 1 / 2 Y ) − 2 ⟺ f 2 ( Y ) = 2 ( Y 2 − 1 / 2 Y + 1 / 1 6 ) − 2 − 1 / 8 ⟺ f 2 ( Y ) = 2 ( Y − 1 / 4 ) 2 − 1 7 / 8 . Thus, m i n X , Y ∈ R f 1 ( X ) + f 2 ( Y ) = m i n X ∈ R f 1 ( X ) + m i n Y ∈ R f 2 ( Y ) = − 5 / 8 − 1 7 / 8 = − 1 1 / 4 and the minimum value occurs when X = 2 1 ; Y = 4 1 ⟹ a = 2 − 2 1 ; b = 2 − 3 2 .