Minimum of f(a,b)

Algebra Level pending

Find the minimum value of 2 a 8 + 2 b 6 + a 4 b 3 2 a 2 2 2a^8 + 2b^6 + a^4 - b^3 - 2a^2 - 2 , where a a and b b are real numbers.


The answer is -2.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Suppose that X = a 2 X=a^2 and Y = b 3 Y=b^3 , then suppose that f 1 ( X ) = 2 X 4 + X 2 2 X f_{1} (X)=2X^4+X^2-2X and f 2 ( Y ) = 2 Y 2 Y 2 f_{2} (Y)=2Y^2-Y-2 . In order to get the minimum value of f 1 ( X ) + f 2 ( Y ) f_{1} (X)+f_{2} (Y) using algebraic principles and concepts, we can use the vertex form rule in both equations to find our desired values. Applying the completing the square method, we have f 1 ( X ) = 2 X 4 + X 2 2 X = 2 X 4 X 2 + 2 X 2 2 X f 1 ( X ) = 2 ( X 4 1 / 2 X 2 ) + 2 ( X 2 X ) f_{1} (X)=2X^4+X^2-2X=2X^4-X^2+2X^2-2X⟺f_1 (X)=2(X^4-1/2 X^2 )+2(X^2-X) f 1 ( X ) = 2 ( X 4 1 / 2 X 2 + 1 / 16 ) + 2 ( X 2 X + 1 / 4 ) 1 / 8 1 / 2 f_{1} (X)=2(X^4-1/2 X^2+1/16)+2(X^2-X+1/4)-1/8-1/2 f 1 ( X ) = 2 ( X 2 1 / 4 ) 2 + 2 ( X 1 / 2 ) 2 5 / 8 f_{1} (X)=2(X^2-1/4)^2+2(X-1/2)^2-5/8 and f 2 ( Y ) = 2 Y 2 Y 2 = 2 ( Y 2 1 / 2 Y ) 2 f_{2} (Y)=2Y^2-Y-2=2(Y^2-1/2 Y)-2 f 2 ( Y ) = 2 ( Y 2 1 / 2 Y + 1 / 16 ) 2 1 / 8 f_{2} (Y)=2(Y^2-1/2 Y+1/16)-2- 1/8 f 2 ( Y ) = 2 ( Y 1 / 4 ) 2 17 / 8 f_{2} (Y)=2(Y-1/4)^2-17/8 . Thus, m i n X , Y R f 1 ( X ) + f 2 ( Y ) = m i n X R f 1 ( X ) + m i n Y R f 2 ( Y ) = 5 / 8 17 / 8 = 11 / 4 min_{X,Y∈R}⁡{f_{1} (X)+f_{2} (Y) }=min_{X∈R}⁡{f_{1} (X) }+min_{Y∈R}⁡{f_{2} (Y) }=-5/8-17/8=-11/4 and the minimum value occurs when X = 1 2 X= \frac{1}{2} ; Y = 1 4 Y=\frac{1}{4} a = 2 1 2 a=2^{-\frac{1}{2}} ; b = 2 2 3 b=2^{-\frac{2}{3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...