Minimum of function given by a Fourier Series

Calculus Level 3

Let us define f ( x ) = n = 1 cos ( n x ) n ! . \large f(x)=\sum_{n=1}^{\infty} \frac{\cos{(nx)}}{n!}. If the function f ( x ) f(x) has an absolute minimum value m m , find the number c c such that e c + c = m e^c+c=m and enter it as your answer. If the number c c does not exist, enter 555.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Apr 6, 2021

We have 1 + f ( x ) = n = 0 cos n x n ! = Re [ n = 0 e i n x n ! ] = Re [ e e i x ] = Re [ e cos x + i sin x ] = Re [ e cos x e i sin x ] = e cos x cos ( sin x ) \begin{aligned} 1+f(x)&=\sum_{n=0}^\infty \frac{\cos nx}{n!} \\ &= \text{Re}\left[\sum_{n=0}^\infty \frac{e^{inx}}{n!}\right] \\ &= \text{Re}\left[ e^{e^{ix}}\right] \\ &= \text{Re}\left[ e^{\cos x + i\sin x }\right] \\ &= \text{Re}\left[ e^{\cos x} e^{i \sin x}\right] \\ &=e^{\cos x} \cos(\sin x) \end{aligned}

So f ( x ) = e cos x cos ( sin x ) 1 f(x)=e^{\cos x} \cos(\sin x)-1 .

Differentiating, f ( x ) = e cos x [ sin x cos ( sin x ) cos x sin ( sin x ) ] = e cos x sin ( x + sin x ) \begin{aligned} f'(x) &=e^{\cos x} \left[ -\sin x \cdot \cos(\sin x)-\cos x \cdot \sin(\sin x)\right] \\ &=e^{\cos x} \sin(x+\sin x) \end{aligned}

Setting this equal to zero, we need x + sin x = k π x+\sin x=k\pi for some integer k k .

Normally, this type of equation (transcendental) is difficult to solve; however, here, note that x = k π x=k\pi is trivially a solution, and the function x + sin x x+\sin x is increasing, so for each k k there is at most one solution.

So, the turning points occur at x = k π x=k\pi .

When k k is even, we have f ( k π ) = e 1 f(k\pi)=e-1 ; when k k is odd, we have f ( k π ) = e 1 1 f(k\pi)=e^{-1}-1 ; hence c = 1 c=\boxed{-1} .

Arturo Presa
Apr 6, 2021

Let us start doing the following calculations

e cos x cos ( sin x ) + i e cos x sin ( sin x ) = e e i x = n = 0 e i n x n ! = n = 0 cos n x + i sin n x n ! = n = 0 cos n x n ! + i n = 0 sin n x n ! e^{ \cos{x} } \cos{(\sin x)}+ie^{ \cos{x} } \sin{(\sin x)}=e^{e^{ix}}=\sum_{n=0}^{\infty}\frac{ e^{inx}}{n!}=\sum_{n=0}^{\infty}\frac{ \cos{nx}+i\sin{nx}}{n!}=\sum_{n=0}^{\infty}\frac{ \cos{nx}}{n!}+i\sum_{n=0}^{\infty}\frac{ \sin{nx}}{n!}

Making the real parts equal, we obtain that n = 0 cos n x n ! = e cos x cos ( sin x ) \sum_{n=0}^{\infty}\frac{ \cos{nx}}{n!}=e^{ \cos{x} } \cos{(\sin x)}

Therefore, f ( x ) = e cos x cos ( sin x ) 1. f(x)=e^{ \cos{x} } \cos{(\sin x)}-1. Using the derivative of the function, we obtain that the minimum value of the function is e 1 1. e^{-1}-1. Therefore, the value of c = 1 . c=\boxed{-1}.

Ah, posted solutions simultaneously. Nice problem!

Chris Lewis - 2 months, 1 week ago

Log in to reply

Thank you, Chris Lewis!

Arturo Presa - 2 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...