Minimum of sum of squares

Algebra Level pending

Let x x , y y and z z be positive real numbers such that x + 2 y + z = 1 x+2y+z=1 . What is the minimum value of x 2 + y 2 + z 2 { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } ?

Give your answer to two decimal places.


The answer is 0.17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anthony Muleta
Feb 10, 2015

By the Cauchy-Schwarz inequality, we have

( x 2 + y 2 + z 2 ) ( 1 2 + 2 2 + 1 2 ) ( x + 2 y + z ) 2 6 ( x 2 + y 2 + z 2 ) 1 x 2 + y 2 + z 2 1 6 \left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } \right) \cdot \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 1 }^{ 2 } \right) \ge { \left( x+2y+z \right) }^{ 2 }\\ \Rightarrow 6\left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } \right) \ge 1\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }\ge \frac { 1 }{ 6 }

Hence, the minimum value is 0.17 \boxed { 0.17} .

I used Lagrange Multipliers for this question. I used this method because I need to study it for my Calc 2 exam. I liked your solution cause it is simple!

Victor Paes Plinio - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...