Minimum of...

Algebra Level 4

a , b R , a > b > 0 a,b \in \mathbb{R}, a>b>0 , Find the minimum of 2 a 3 + 3 a b b 2 \sqrt{2}a^3+\dfrac{3}{ab-b^2}


The answer is 10.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chan Lye Lee
Jan 1, 2020

Note that a = ( a b ) + b 2 ( a b ) b a=(a-b)+b\ge 2\sqrt{(a-b)b} , which implies that 1 ( a b ) b 4 a 2 \frac{1}{(a-b)b} \ge \frac{4}{a^2} .

Now 2 a 3 + 3 a b b 2 2 a 3 + 12 a 2 = \sqrt{2}a^3+\frac{3}{ab-b^2}\ge \sqrt{2}a^3+\frac{12}{a^2}= 2 2 a 3 + 2 2 a 3 + 4 a 2 + 4 a 2 + 4 a 2 5 ( 2 5 ) 1 5 = 10 \frac{\sqrt{2}}{2}a^3+\frac{\sqrt{2}}{2}a^3+\frac{4}{a^2}+\frac{4}{a^2}+\frac{4}{a^2}\ge 5\left(2^5\right)^{\frac{1}{5}}=10 , where the equality holds iff a = 2 a=\sqrt{2} and b = 2 2 b=\frac{\sqrt{2}}{2} .

Since a > b > 0 a>b>0 , we can let a = b + x a=b+x , where x > 0 x>0 . Let f ( a , b ) f(a,b) be the expression. Then

f ( a , b ) = 2 a 3 + 3 a b b 2 = 2 ( b + x ) 3 + 3 b x By AM-GM inequality 2 ( 2 b x ) 3 + 3 b x = 4 ( 2 b x ) 3 + 6 ( 2 b x ) 2 \begin{aligned} f(a,b) & = \sqrt 2 a^3 + \frac 3{ab-b^2} \\ & = \sqrt 2 (\blue{b+x})^3 + \frac 3{bx} & \small \blue{\text{By AM-GM inequality}} \\ & \ge \sqrt 2 (\blue{2\sqrt{bx}})^3 + \frac 3{bx} \\ & = 4(\sqrt{2bx})^3 + \frac 6{(\sqrt{2bx})^2} \end{aligned}

Let u = 2 b x u = \sqrt{2bx} and g ( u ) = 4 u 3 + 6 u 2 d g ( u ) d u = 12 u 2 12 u 3 u = 1 g(u) = 4u^3 + \dfrac 6{u^2} \implies \dfrac {dg(u)}{du} = 12u^2 - \dfrac {12}{u^3} \implies u = 1 , when d g ( u ) d u = 0 \dfrac {dg(u)}{du} = 0 . Since d 2 g ( u ) d u u = 1 > 0 \dfrac {d^2 g(u)}{du} \bigg|_{u=1} > 0 , min ( g ( u ) ) = g ( 1 ) = 10 \min (g(u)) = g(1) = 10 . Therefore f ( a , b ) 10 f(a,b) \ge \boxed{10} and equality occurs when b = x = 1 2 b = x = \dfrac 1{\sqrt 2} and a = 2 a=\sqrt 2 .

Yash Mehan
Feb 26, 2020

minimizing 2 a 3 + 3 ( b ) ( a b ) \sqrt{2} a^{3} + \frac{3}{(b)(a-b)}

-> 2 a 3 + 3 a ( a ) ( b ) ( a b ) \sqrt{2} a^{3} + \frac{3a}{(a)(b)(a-b)}

-> 2 a 3 + 3 a ( 1 a b + 1 b ) \sqrt{2} a^{3} + \frac{3}{a} (\frac{1}{a-b} + \frac{1}{b})

by AM HM inequality, 1 a b + 1 b > = 4 a \frac{1}{a-b} + \frac{1}{b} >= \frac{4}{a}

therefore, we have to minimize 2 a 3 + 12 a 2 . \sqrt{2} a^{3} + \frac{12}{a^{2}}.

break it into 2 2 a 3 + 2 2 a 3 + 4 a 2 + 4 a 2 + 4 a 2 . \frac {\sqrt{2}}{2} a^{3} + \frac {\sqrt{2}}{2} a^{3} + \frac{4}{a^{2}} + \frac{4}{a^{2}} + \frac{4}{a^{2}}.

Applying AM GM, 2 2 a 3 + 2 2 a 3 + 4 a 2 + 4 a 2 + 4 a 2 > = 5 × ( ( 2 2 ) 2 64 ) 1 / 5 \frac {\sqrt{2}}{2} a^{3} + \frac {\sqrt{2}}{2} a^{3} + \frac{4}{a^{2}} + \frac{4}{a^{2}} + \frac{4}{a^{2}} >= 5 \times ((\frac {\sqrt{2}}{2})^{2} 64)^{1/5} Which gives \( \boxed{10}

\)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...