Minimize Surface Area

Calculus Level 4

Find the measure of the angle A B O \angle{ABO} (in degrees) that minimizes the slant surface area of the cone when the volume of the cone is held constant.


Bonus: Let P n P_n be a pyramid whose base is a regular n n -gon. Prove that the angle of inclination made between the slant height and the base which minimizes the lateral surface area of the pyramid P n P_{n} when the volume is held constant is independent of n n .


The answer is 54.7356.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Nov 25, 2017

Recall the volume and the slant surface area of a cone are given as V : = 1 3 π r 2 h V:= \dfrac13 \pi r^2 h and S : = π r s S:= \pi r s , where r , h , s r, h, s denote the radius, height and the slant height of the cone.

By Pythagorean theorem , we can see that r 2 + h 2 = s 2 r^2 + h^2= s^2 .

We essentially want to find the value of tan 1 ( h r ) \tan^{-1} \left( \dfrac hr \right) .

Since the volume is held constant, we can let V = π 3 V = \dfrac\pi3 , then π 3 = 1 3 π r 2 h h = 1 r 2 \dfrac\pi3 = \dfrac13 \pi r^2 h \Leftrightarrow h = \dfrac1{r^2} .

We want to find the value of r r when S S is minimized. If S S is minimized, then so is T : = S 2 T:= S^2 . We have

T = π 2 r 2 ( r 2 + h 2 ) = π r 2 ( r 2 + 1 r 4 ) = π ( r 4 + 1 r 2 ) . T = \pi^2 r^2 (r^2 + h^2) = \pi r^2 \left( r^2 + \dfrac1{r^4} \right) = \pi \left( r^4 + \dfrac1{r^2} \right) .

When at extrema, d T d r = 0 π ( 4 r 3 2 r 3 ) = 0 r 6 = 1 2 \dfrac{dT}{dr} = 0 \Rightarrow \pi \left( 4r^3 - \dfrac2{r^3} \right) = 0 \Rightarrow r^6 = \dfrac12 .

We apply the second derivative test to prove that T T has a minimum value when r 6 = 1 2 r^6 = \dfrac12 ,

d 2 T d r 2 = π ( 12 r 2 + 6 r 4 ) > 0. \dfrac{d^2 T}{dr^2} = \pi \left( 12r^2 + \dfrac{6}{r^4} \right) > 0 .

Since the second derivative is positive when r 6 = 1 2 r^6 = \dfrac12 , T T is indeed minimized when at r = 2 1 / 6 r = 2^{-1/6} . Hence tan 1 ( h r ) = tan 1 ( 1 / r 2 r ) = tan 1 2 54.735 6 . \tan^{-1} \left( \dfrac hr \right) = \tan^{-1} \left( \dfrac{1/r^2}r \right) = \tan^{-1} \sqrt2 \approx \boxed{54.7356^\circ} .

Rocco Dalto
Nov 25, 2017

Using the diagram of the cone above:

Let m A B O = θ m\angle{ABO} = \theta

Let K K be a constant.

The volume V = 1 3 π r 2 h V = \dfrac{1}{3} \pi r^2 h and the lateral surface area P = 2 π r s P = 2 \pi r s .

Let m A B O = θ m\angle{ABO} = \theta and let K K be a constant.

r = s cos ( θ ) , h = s sin ( θ ) V = 1 3 π cos 2 ( θ ) sin ( θ ) s 3 = K s = ( 3 K π cos 2 ( θ ) sin ( θ ) ) 1 3 r = s \cos(\theta), h = s \sin(\theta) \implies V = \dfrac{1}{3} \pi \cos^2(\theta) \sin(\theta) s^3 = K \implies s = (\dfrac{3K}{\pi \cos^2(\theta) \sin(\theta)})^{\dfrac{1}{3}} \implies

P ( θ ) = 2 π cos ( θ ) sin ( θ ) s 2 = 2 π cos ( θ ) sin ( θ ) ( 9 k 2 π 2 cos 4 ( θ ) sin ( θ ) ) 1 3 P(\theta) = 2\pi \cos(\theta) \sin(\theta) s^2 = 2\pi \cos(\theta) \sin(\theta) (\dfrac{9 k^2}{\pi^2 \cos^4(\theta) \sin(\theta)})^\dfrac{1}{3}

Let j = ( 9 K 2 π ) 1 3 P ( θ ) = 2 j ( sec ( θ ) ) 1 3 ( csc ( θ ) ) 1 3 d s d θ = 2 j 3 ( sec ( θ ) ) 1 3 ( csc ( θ ) ) 2 3 ( tan ( θ ) 2 cot ( θ ) ) = 0 j = (9 K^2 \pi)^{\dfrac{1}{3}} \implies P(\theta) = 2 j (\sec(\theta))^\dfrac{1}{3} (\csc(\theta))^\dfrac{1}{3} \implies \dfrac{ds}{d\theta} = \dfrac{2j}{3} (\sec(\theta))^\dfrac{1}{3} (\csc(\theta))^\dfrac{2}{3} (\tan(\theta) - 2 \cot(\theta)) = 0 \implies

3 sin 2 ( θ ) 2 = 0 sin ( θ ) = ± 2 3 3 \sin^2(\theta) - 2 = 0 \implies \sin(\theta) = \pm \sqrt{\dfrac{2}{3}} choosing sin ( θ ) = 2 3 θ = 54.735 6 \sin(\theta) = \sqrt{\dfrac{2}{3}} \implies \theta = \boxed{54.7356^\circ}

B o n u s : Bonus:

The desired angle is independent of n n and the work below verifies this.

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies the Volume of the pyramid V p = n 12 cot ( 180 n ) x 2 H V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

Let A C = H AC = H be the height of the pyramid, B C = h BC = h^* , and A B = h AB = h' be the slant height of the pyramid and m C B A = θ m\angle{CBA} = \theta

The lateral surface area S = n 2 x h S = \dfrac{n}{2} x h' .

h = x 2 cot ( 180 n ) = h cos ( θ ) x = 2 tan ( 180 n ) cos ( θ ) h h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) = h' \cos(\theta) \implies x = 2 \tan(\dfrac{180}{n}) \cos(\theta) h' and H = h sin ( θ ) H = h' \sin(\theta) and letting u ( n ) = tan ( 180 n ) u(n) = \tan(\dfrac{180}{n}) \implies V p = n 3 u ( n ) cos 2 ( θ ) sin ( θ ) h = K V_{p} = \dfrac{n}{3} u(n) \cos^2(\theta) \sin(\theta) h' = K and S = n u ( n ) c o s ( θ ) h 2 . S = n * u(n) cos(\theta) h'^2.

V p = n 3 u ( n ) cos 2 ( θ ) sin ( θ ) h = K h = ( 3 K n u ( n ) c o s 2 ( θ ) s i n ( θ ) ) 1 3 S ( θ ) = j ( n ) ( s e c ( θ ) ) 1 3 ( c s c ( θ ) ) 2 3 V_{p} = \dfrac{n}{3} u(n) \cos^2(\theta) \sin(\theta) h' = K \implies h' = (\dfrac{3K}{n * u(n_) cos^2(\theta) sin(\theta)})^{\dfrac{1}{3}} \implies S(\theta) = j(n) * (sec(\theta))^{\dfrac{1}{3}} (csc(\theta))^{\dfrac{2}{3}} , where j ( n ) = ( 9 k 2 n u ( n ) ) 1 3 j(n) = (9 k^2 n * u(n))^{\dfrac{1}{3}}

d S d θ = j ( n ) 3 ( s e c θ ) 1 3 ( csc θ ) 2 3 ( tan θ 2 cot θ ) = 0 \implies \dfrac{dS}{d\theta} = \dfrac{j(n)}{3} (sec\theta)^\dfrac{1}{3} (\csc\theta)^\dfrac{2}{3} * (\tan\theta - 2 \cot\theta) = 0 \implies

3 sin 2 θ 2 = 0 sin θ = ± 2 3 3 \sin^2\theta - 2 = 0 \implies \sin\theta = \pm \sqrt{\dfrac{2}{3}} . choosing sin θ = 2 3 θ = 54.735 6 \sin\theta = \sqrt{\dfrac{2}{3}} \implies \theta = \boxed{54.7356^\circ}

\therefore The measure of the desired angle θ \theta is independent of n n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...