Minimum Triangle Ratio

Calculus Level 3

Consider a right triangle.

What is the minimum possible ratio of the hypotenuse length to the sum of the lengths of the short sides?


The answer is 0.7071.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vishal S
Nov 1, 2017

C o n s i d e r a t r i a n g l e w i t h c a s l e n g t h o f h y p o t e n u s e , a a s l e n g t h o f o p p o s i t e s i d e a n d b a s l e n g t h o f a d j a c e n t s i d e T o f i n d : m i n o f c a + b F r o m t h e c o n s i d e r e d t r i a n g l e , tan A = a b tan A + 1 = a + b b ( 1 ) sec A = c b ( 2 ) ( 2 ) ( 1 ) = sec A tan A + 1 = c a + b . H e n c e m i n o f c a + b = m i n o f sec A tan A + 1 = 1 sin A + cos A . m i n o f 1 sin A + cos A = m a x o f s i n A + c o s A . m a x o f s i n A + c o s A o c c u r s a t A = π 4 m a x o f s i n A + c o s A = 2 . m i n o f 1 sin A + cos A = 1 2 0.7071 = m i n o f c a + b . Consider\quad a\quad triangle\quad with\quad c\quad as\quad length\quad of\quad hypotenuse,\quad a\quad as\quad length\quad of\quad opposite\quad side\quad and\quad b\quad as\quad length\quad of\quad adjacent\quad side\quad \\ To\quad find:\quad min\quad of\quad \frac { c }{ a+b } \\ From\quad the\quad considered\quad triangle,\\ \tan { A } =\frac { a }{ b } \Rightarrow \tan { A } +1=\frac { a+b }{ b } \longrightarrow (1)\\ \sec { A } =\frac { c }{ b } \longrightarrow (2)\\ \frac { (2) }{ (1) } =\frac { \sec { A } }{ \tan { A } +1 } =\frac { c }{ a+b } .\\ Hence\quad min\quad of\quad \frac { c }{ a+b } =\quad min\quad of\quad \frac { \sec { A } }{ \tan { A } +1 } =\frac { 1 }{ \sin { A } +\cos { A } } .\\ min\quad of\quad \frac { 1 }{ \sin { A } +\cos { A } } =\quad max\quad of\quad sinA+cosA.\\ max\quad of\quad sinA+cosA\quad occurs\quad at\quad A=\frac { \pi }{ 4 } \quad \\ \Rightarrow \quad max\quad of\quad sinA+cosA\quad =\quad \sqrt { 2 } .\\ \therefore \quad min\quad of\quad \quad \frac { 1 }{ \sin { A } +\cos { A } } =\frac { 1 }{ \sqrt { 2 } } ≈ 0.7071=min\quad of\quad \frac { c }{ a+b } .

Let the two short sides be x x and y y

So, we need to find the minimum of :

x 2 + y 2 x + y \frac{\sqrt{x^2+y^2}}{x+y}

By Titu's Lemma it follows that :

x 2 1 + y 2 1 ( x + y ) 2 2 \frac{x^2}{1}+\frac{y^2}{1} \ge \frac{(x+y)^2}{2}

So,

x 2 + y 2 x + y 1 2 \frac{\sqrt{x^2+y^2}}{x+y} \ge \frac{1}{\sqrt{2}}

Hence , the required ratio is 1 2 \frac{1}{√2} .

Find min of f ( a , b ) = a 2 + b 2 a + b f(a,b) = \frac{\sqrt{a^2 + b^2}}{a +b} being a a , b b opposite sides of hypotenuse. d f ( a , b ) d a = a a 2 + b 2 ( a + b ) a 2 + b 2 ( a + b ) 2 = a b b 2 a 2 + b 2 ( a + b ) 2 = 0 a = b \dfrac{df (a,b)}{da} = \frac{\frac{a}{\sqrt{a^2 +b^2}} \cdot (a + b) - \sqrt{a^2 +b^2}}{(a + b)^2} = \frac{ab - b^2}{\sqrt{a^2 +b^2} \cdot (a + b)^2} = 0 \Rightarrow a = b d f ( a , b ) d b = b a 2 + b 2 ( a + b ) a 2 + b 2 ( a + b ) 2 = 0 \dfrac{df (a,b)}{db} = \frac{\frac{b}{\sqrt{a^2 +b^2}} \cdot (a + b) - \sqrt{a^2 +b^2}}{(a + b)^2} = 0 Hence, min of f ( a , b ) = a 2 + b 2 a + b f(a,b) = \frac{\sqrt{a^2 + b^2}}{a +b} is f ( a , a ) = 2 a 2 a = 2 2 0.7071 f(a,a) = \frac{\sqrt{2} a}{2a} = \frac{\sqrt{2}}{ 2} \approx 0.7071 , because, f is a infinite diferentiable function in the open set A = { ( a , b ) R 2 / a > 0 , b > 0 } A = \{ (a,b) \in \mathbb{R}^2 \text{ / } a > 0, b > 0\} and each absolute extremum is a relative extremum f ( a , a ) < f ( 3 , 4 ) f(a,a) < f(3,4)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...