Consider a right triangle.
What is the minimum possible ratio of the hypotenuse length to the sum of the lengths of the short sides?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the two short sides be x and y
So, we need to find the minimum of :
x + y x 2 + y 2
By Titu's Lemma it follows that :
1 x 2 + 1 y 2 ≥ 2 ( x + y ) 2
So,
x + y x 2 + y 2 ≥ 2 1
Hence , the required ratio is √ 2 1 .
Find min of f ( a , b ) = a + b a 2 + b 2 being a , b opposite sides of hypotenuse. d a d f ( a , b ) = ( a + b ) 2 a 2 + b 2 a ⋅ ( a + b ) − a 2 + b 2 = a 2 + b 2 ⋅ ( a + b ) 2 a b − b 2 = 0 ⇒ a = b d b d f ( a , b ) = ( a + b ) 2 a 2 + b 2 b ⋅ ( a + b ) − a 2 + b 2 = 0 Hence, min of f ( a , b ) = a + b a 2 + b 2 is f ( a , a ) = 2 a 2 a = 2 2 ≈ 0 . 7 0 7 1 , because, f is a infinite diferentiable function in the open set A = { ( a , b ) ∈ R 2 / a > 0 , b > 0 } and each absolute extremum is a relative extremum f ( a , a ) < f ( 3 , 4 )
Problem Loading...
Note Loading...
Set Loading...
C o n s i d e r a t r i a n g l e w i t h c a s l e n g t h o f h y p o t e n u s e , a a s l e n g t h o f o p p o s i t e s i d e a n d b a s l e n g t h o f a d j a c e n t s i d e T o f i n d : m i n o f a + b c F r o m t h e c o n s i d e r e d t r i a n g l e , tan A = b a ⇒ tan A + 1 = b a + b ⟶ ( 1 ) sec A = b c ⟶ ( 2 ) ( 1 ) ( 2 ) = tan A + 1 sec A = a + b c . H e n c e m i n o f a + b c = m i n o f tan A + 1 sec A = sin A + cos A 1 . m i n o f sin A + cos A 1 = m a x o f s i n A + c o s A . m a x o f s i n A + c o s A o c c u r s a t A = 4 π ⇒ m a x o f s i n A + c o s A = 2 . ∴ m i n o f sin A + cos A 1 = 2 1 ≈ 0 . 7 0 7 1 = m i n o f a + b c .