Minimum value

Algebra Level 4

If 4 a + 9 b + 16 c + 36 d + 49 e = 8 \frac { 4 }{ a } +\frac { 9 }{ b } +\frac { 16 }{ c } +\frac { 36 }{ d } +\frac { 49 }{ e } =8

find the minimum value of a + b + c + d + e a+b+c+d+e


Details and assumptions :-

\bullet a , b , c , d , e a,b,c,d,e are positive real numbers.


The answer is 60.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aditya Raut
Dec 16, 2014

By the Cauchy Schwarz Inequality,

( i = 1 n a i 2 ) ( j = 1 n b j 2 ) ( i = 1 n a i b i ) 2 \displaystyle \biggl( \sum_{i=1}^n a_i ^2 \biggr) \biggl( \sum_{j=1}^n b_j^2 \biggr) \geq \biggl( \sum_{i=1}^n a_ib_i \biggr) ^2


Let a i a_i be ( a , b , c , d , e ) (\sqrt{a},\sqrt{b},\sqrt{c},\sqrt{d},\sqrt{e})

Let b i b_i be ( 2 a , 3 b , 4 c , 6 d , 7 e ) \Bigl(\frac{2}{\sqrt{a}} , \frac{3}{\sqrt{b}},\frac{4}{\sqrt{c}},\frac{6}{\sqrt{d}} ,\frac{7}{\sqrt{e}}\Bigr)

Now applying the inequality, we get

( a + b + c + d + e ) ( 4 a + 9 b + 16 c + 36 d + 49 e ) ( 2 + 3 + 4 + 6 + 7 ) 2 \displaystyle (a+b+c+d+e)\biggl( \frac{4}{a}+\frac{9}{b} + \frac{16}{c} + \frac{36}{d}+\frac{49}{e} \biggr) \geq (2+3+4+6+7)^2

( a + b + c + d + e ) 2 2 2 8 \displaystyle (a+b+c+d+e) \geq \dfrac{22^2}{8}

( a + b + c + d + e ) 484 8 = 60.5 \displaystyle (a+b+c+d+e) \geq \dfrac{484}{8} = \boxed{60.5}

Nice solution .Welcome

(this is copied from deepanshu gupta's comment)

lim n r = 1 n ( V e r y N i c e ) r \lim _{ n\rightarrow \infty }{ \prod _{ r=1 }^{ n }{ { (Very\quad Nice) }^{ r } } }

another approach

a + b + c + d + e = 2. a 2 + 3. b 3 + 4. c 4 + 6. d 6 + 7. e 7 a + b + c + d + e = \ 2.\dfrac{a}{2} + 3.\dfrac{b}{3} + 4.\dfrac{c}{4} + 6.\dfrac{d}{6} + 7.\dfrac{e}{7}

A . M H . M A.M \geq H.M

2. a 2 + 3. b 3 + 4. c 4 + 6. d 6 + 7. e 7 22 22 4 a + 9 b + 36 d + 49 e \dfrac{2.\dfrac{a}{2} + 3.\dfrac{b}{3} + 4.\dfrac{c}{4} + 6.\dfrac{d}{6} + 7.\dfrac{e}{7}}{22} \geq \dfrac{22}{ \dfrac{4}{a} + \dfrac{9}{b} + \dfrac{36}{d} + \dfrac{49}{e}}

m i n = 2 2 2 8 min = \dfrac{22^{2}}{8}


4 a + 9 b + 16 c + 36 d + 49 e ( 2 + 3 + 4 + 6 + 7 ) 2 a + b + c + d + e \frac { 4 }{ a } +\frac { 9 }{ b } +\frac { 16 }{ c } +\frac { 36 }{ d } +\frac { 49 }{ e } \geq \dfrac{ (2 + 3 + 4 + 6 + 7)^{2}}{a + b + c + d + e}

8 2 2 2 a + b + c + d + e 8 \geq \dfrac{ 22^{2}}{a + b + c + d + e}

m i n = 2 2 2 8 min = \dfrac{22^{2}}{8}

U Z - 6 years, 5 months ago

Log in to reply

@megh choksi your comment and my solution were both posted at the same time (Isn't it strange ???).

Shubhendra Singh - 6 years, 5 months ago

Log in to reply

writing in latex makes everyone busy such that a picture too can't distract oneself

U Z - 6 years, 5 months ago

Really level5?? (little overrated) (no offense)

Parth Lohomi - 6 years, 5 months ago

Yeah that simple, how can it be level 5?

Kartik Sharma - 6 years, 5 months ago

Well it was just a basic application of Titu's Lemma. I can't believe this is still 170 points.

Kunal Verma - 6 years ago
Shubhendra Singh
Dec 17, 2014

Let 4 a + 9 b + 16 c + 36 d + 49 e = S \dfrac{4}{a}+\dfrac{9}{b}+\dfrac{16}{c}+\dfrac{36}{d}+\dfrac{49}{e}=S

By A M H M AM \geq HM

2 × a 2 + 3 × b 3 + 4 × c 4 + 6 × d 6 + 7 × e 7 22 22 S \dfrac{2 \times\dfrac{a}{2}+3\times\dfrac{b}{3}+4\times\dfrac{c}{4}+6\times\dfrac{d}{6}+ 7\times\dfrac{e}{7}}{22} \geq \dfrac{22}{S}

a + b + c + d + e 22 × 22 8 a+b+c+d+e\geq \dfrac{22\times22}{8}

a + b + c + d + e 60.5 a+b+c+d+e\geq 60.5

So ( a + b + c + d + e ) m i n = 60.5 (a+b+c+d+e)_{min}=60.5

Just wrote the same in aditya raut's comment.

U Z - 6 years, 5 months ago

Log in to reply

No probs :) .

Shubhendra Singh - 6 years, 5 months ago

Log in to reply

Thanks , upvoted!

(this is copied from deepanshu gupta's comment)

lim n r = 1 n ( V e r y N i c e ) r \lim _{ n\rightarrow \infty }{ \prod _{ r=1 }^{ n }{ { (Very\quad Nice) }^{ r } } }

U Z - 6 years, 5 months ago
Mehul Chaturvedi
Dec 17, 2014

by Titu's Lemma we have,

i = 1 n ( x i 2 ) ( a i ) ( i = 1 n ( x i ) ) 2 ( i = 1 n ( a i ) ) 2 2 a + 3 2 b + 4 2 c + 6 2 d + 7 2 e ( 2 + 3 + 4 + 6 + 7 ) 2 a + b + c + d + e 8 ( 22 ) 2 a + b + c + d + e a + b + c + d + e 484 8 i . e a + b + c + d + e 60.5 i = 1 n ( x i 2 ) ( a i ) ( i = 1 n ( x i ) ) 2 ( i = 1 n ( a i ) ) 2 2 a + 3 2 b + 4 2 c + 6 2 d + 7 2 e ( 2 + 3 + 4 + 6 + 7 ) 2 a + b + c + d + e 8 ( 22 ) 2 a + b + c + d + e a + b + c + d + e 484 8 i . e a + b + c + d + e 60.5 \large{ \sum _{ i=1 }^{ n }{ \frac { \left( { x }_{ i }^{ 2 } \right) }{ \left( { a }_{ i } \right) } } \ge \frac { \left( \sum _{ i=1 }^{ n }{ ({ x }_{ i }) } \right) ^{ 2 } }{ \left( \sum _{ i=1 }^{ n }{ ({ a }_{ i }) } \right) } \\ \therefore \frac { { 2 }^{ 2 } }{ a } +\frac { { 3 }^{ 2 } }{ b } +\frac { { 4 }^{ 2 } }{ c } +\frac { { 6 }^{ 2 } }{ d } +\frac { { 7 }^{ 2 } }{ e } \ge \frac { (2+3+4+6+7)^{ 2 } }{ a+b+c+d+e } \\ \therefore \quad 8\quad \ge \frac { (22)^{ 2 } }{ a+b+c+d+e } \\ \therefore \quad a+b+c+d+e\ge \quad \frac { 484 }{ 8 } \\ i.e\quad a+b+c+d+e\ge \quad 60.5}\sum _{ i=1 }^{ n }{ \frac { \left( { x }_{ i }^{ 2 } \right) }{ \left( { a }_{ i } \right) } } \ge \frac { \left( \sum _{ i=1 }^{ n }{ ({ x }_{ i }) } \right) ^{ 2 } }{ \left( \sum _{ i=1 }^{ n }{ ({ a }_{ i }) } \right) } \\ \therefore \frac { { 2 }^{ 2 } }{ a } +\frac { { 3 }^{ 2 } }{ b } +\frac { { 4 }^{ 2 } }{ c } +\frac { { 6 }^{ 2 } }{ d } +\frac { { 7 }^{ 2 } }{ e } \ge \frac { (2+3+4+6+7)^{ 2 } }{ a+b+c+d+e } \\ \therefore \quad 8\quad \ge \frac { (22)^{ 2 } }{ a+b+c+d+e } \\ \therefore \quad a+b+c+d+e\ge \quad \frac { 484 }{ 8 } \\ i.e\quad a+b+c+d+e\ge \quad 60.5

Please help !! I wanna increase font size

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

\displaystyle will help you a lot!

Samuraiwarm Tsunayoshi - 6 years, 5 months ago

instead of \frac write \dfrac , for more larger wite \huge{ all mathematical terms}

U Z - 6 years, 5 months ago

Log in to reply

A lot of thanks to you @megh choksi and would you please suggest me any book for Diophantine equations my email address is m e h u l 355180 @ g m a i l . c o m mehul355180@gmail.com

Mehul Chaturvedi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...