Grown pentagram

Algebra Level 3

If z 1 , z 2 , z 3 , z 4 z_1 , z_2 , z_3 , z_4 are the roots of the equation z 4 + z 3 + z 2 + z 1 + 1 = 0 z^4 + z^3 + z^2 + z^1 + 1 = 0 , then what the least value of z 1 + z 2 \left \lfloor\ \left | z_1 + z_2 \right | \ \right \rfloor ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 11, 2015

It is given that f ( z ) = z 4 + z 3 + z 2 + z + 1 = 0 f(z) = z^4+z^3+z^2+z+1 = 0 .

Multiplying it with z z : z 5 + z 4 + z 3 + z 2 + z = 0 \Rightarrow z^5+ z^4+z^3+z^2+z= 0

Adding 1 1 on both sides: z 5 + z 4 + z 3 + z 2 + z + 1 = 1 \Rightarrow z^5+ z^4+z^3+z^2+z + 1= 1

z 5 = 1 = cos 2 k π + i sin 2 k π = e 2 π i \Rightarrow z^5 = 1 = \cos{2k\pi}+i\sin{2k \pi} = e^{2\pi i} , where i = 1 i = \sqrt{-1} and k = 1 , 2 , 3 , 4 k = 1,2,3,4 . Therefore,

z = e i 2 k π 5 = { cos 2 π 5 + i sin 2 π 5 cos 4 π 5 + i sin 4 π 5 cos 6 π 5 + i sin 6 π 5 = cos 4 π 5 i sin 4 π 5 cos 8 π 5 + i sin 8 π 5 = cos 2 π 5 i sin 2 π 5 z = e^{i\frac{2k\pi}{5}} = \begin{cases} \cos{\frac{2\pi}{5}}+i\sin{\frac{2\pi}{5}} \\ \cos{\frac{4\pi}{5}}+i\sin{\frac{4\pi}{5}} \\ \cos{\frac{6\pi}{5}}+i\sin{\frac{6\pi}{5}} = \cos{\frac{4\pi}{5}}-i\sin{\frac{4\pi}{5}} \\ \cos{\frac{8\pi}{5}}+i\sin{\frac{8\pi}{5}} = \cos{\frac{2\pi}{5}}-i\sin{\frac{2\pi}{5}} \end{cases}

Possible values of z 1 + z 2 z_1+z_2 are as follows:

z 1 + z 2 = { cos 2 π 5 + cos 4 π 5 + i ( sin 2 π 5 + sin 4 π 5 ) cos 2 π 5 + cos 4 π 5 + i ( sin 2 π 5 sin 4 π 5 ) 2 cos 2 π 5 2 cos 4 π 5 cos 2 π 5 + cos 4 π 5 i ( sin 2 π 5 sin 4 π 5 ) cos 2 π 5 + cos 4 π 5 i ( sin 2 π 5 + sin 4 π 5 ) z_1+z_2=\begin{cases} \cos{\frac{2\pi}{5}}+\cos{\frac{4\pi}{5}} + i( \sin{\frac{2\pi}{5}}+ \sin{\frac{4\pi}{5}}) \\ \cos{\frac{2\pi}{5}}+\cos{\frac{4\pi}{5}} + i( \sin{\frac{2\pi}{5}}- \sin{\frac{4\pi}{5}} ) \\ 2\cos{\frac{2\pi}{5}} \\ 2\cos{\frac{4\pi}{5}} \\ \cos{\frac{2\pi}{5}}+\cos{\frac{4\pi}{5}} - i( \sin{\frac{2\pi}{5}}- \sin{\frac{4\pi}{5}} ) \\ \cos{\frac{2\pi}{5}}+\cos{\frac{4\pi}{5}} - i( \sin{\frac{2\pi}{5}}+\sin{\frac{4\pi}{5}} ) \end{cases}

Possible values of z 1 + z 2 |z_1+z_2| are as follows:

z 1 + z 2 = { 2 cos 2 π 5 = 0.618033989 2 cos 4 π 5 = 1.618033989 |z_1+z_2|=\begin{cases} |2\cos{\frac{2\pi}{5}}| = 0.618033989 \\ |2\cos{\frac{4\pi}{5}}| = 1.618033989 \end{cases}

Therefore, min z 1 + z 2 = 0.618033989 = 0 \min {\lfloor |z_1+z_2| \rfloor } = \lfloor 0.618033989 \rfloor = \boxed{0}

Moderator note:

Nicely done. One should note that 2 cos 4 π 5 = ϕ 2\cos{\frac{4\pi}{5}}= \phi and 2 cos 2 π 5 = ϕ 1 2\cos{\frac{2\pi}{5}} = \phi - 1 , where ϕ \phi is the golden ratio.

Those are the complex fifth roots of unity, whixh lie on a regular pentagon on unit circle. So, 0<| z 1 + z 2 z_1 + z_2 |<1 and floor value is 0.

Jillu Tip
Aug 23, 2015

This could also be done easily if we graph the fifth roots of unity, where we have a pentagon. Then, we have to analyze the four angles(72, 144, 216, 288.) To have the minimum, we need to cancel the sines or cosines at least, so when we graph the pentagon in the complex plane, we find that 72 and 288, or 144 and 216 have their sines canceled out. Now, we resort to find the min values of the sum of the real values(the cosines). cos72 + cos288 have a lower cosine than cos(144 ) + cos216(this can be easily seen when a complex pentagon is accurately graphed. Thus, the magnitude is little greater than 0.5 and less than 1, so the floor function is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...