Minimum value

Geometry Level 4

Find the minimum value of 13 sec θ 9 sin θ tan θ 13\sec\theta-9\sin\theta\tan\theta for π 2 < θ < π 2 \dfrac{-\pi}{2}<\theta<\dfrac{\pi}{2} .


This is a part of the Set .


The answer is 12.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Gian Sanjaya
Aug 31, 2015

We can use trigonometry identities to re-write 13 sec θ 9 sin θ tan θ 13\sec\theta-9\sin\theta\tan\theta as:

13 cos θ 9 sin 2 θ cos θ = 13 9 sin 2 θ cos θ = 4 cos θ + 9 cos θ \frac{13}{\cos\theta}-\frac{9\sin^2\theta}{\cos\theta}=\frac{13-9\sin^2\theta}{\cos\theta}=\frac{4}{\cos\theta}+9\cos\theta

Since π 2 < θ < π 2 \frac{-\pi}{2}<\theta<\frac{\pi}{2} , then 1 cos θ > 0 1\geq\cos\theta>0 , so we can apply AM-GM inequality to get 4 cos θ + 9 cos θ 2 4 × 9 = 12 \frac{4}{\cos\theta}+9\cos\theta\geq2\sqrt{4\times9}=12 . Equality happens when cos θ = 2 3 \cos\theta=\frac{2}{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...