Minimum Value

Algebra Level 2

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) \large (1 + a)(1 + b)(1 + c)(1 + d)

If a , b , c a,b,c and d d are four positive real numbers such that a × b × c × d = 1 a\times b\times c\times d = 1 , then find the minimum value of the expression above.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sam Bealing
Mar 30, 2016

By AM-GM on each term we have:

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) 2 a × 2 b × 2 c × 2 d = 16 a b c d = 16 (1+a)(1+b)(1+c)(1+d) \geq 2 \sqrt{a} \times 2 \sqrt{b} \times 2 \sqrt{c} \times 2 \sqrt{d} =16 \sqrt{abcd} =16

With equality iff a = b = c = d = 1 a=b=c=d=1

Manuel Kahayon
Mar 30, 2016

By Holder's Inequality,

( 1 + a ) 1 4 ( 1 + b ) 1 4 ( 1 + c ) 1 4 ( 1 + d ) 1 4 ( a b c d ) 1 4 + ( 1 1 1 1 ) 1 4 (1+a)^{\frac{1}{4}}(1+b)^{\frac{1}{4}}(1+c)^{\frac{1}{4}}(1+d)^{\frac{1}{4}} \geq (abcd)^{\frac{1}{4}}+(1*1*1*1)^{\frac{1}{4}}

( 1 + a ) 1 4 ( 1 + b ) 1 4 ( 1 + c ) 1 4 ( 1 + d ) 1 4 ( 1 ) 1 4 + ( 1 ) 1 4 (1+a)^{\frac{1}{4}}(1+b)^{\frac{1}{4}}(1+c)^{\frac{1}{4}}(1+d)^{\frac{1}{4}} \geq (1)^{\frac{1}{4}}+(1)^{\frac{1}{4}}

( ( 1 + a ) 1 4 ( 1 + b ) 1 4 ( 1 + c ) 1 4 ( 1 + d ) 1 4 ) 4 2 4 ((1+a)^{\frac{1}{4}}(1+b)^{\frac{1}{4}}(1+c)^{\frac{1}{4}}(1+d)^{\frac{1}{4}})^4 \geq 2^4

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) 16 (1+a)(1+b)(1+c)(1+d) \geq \boxed{16}

Wow galing, may nakita akong solution na galing kay Osbert. Hi!

Pil Pinas - 4 years, 6 months ago

Log in to reply

Whaaat stalker

Manuel Kahayon - 4 years, 6 months ago
Emmanuel Torres
Feb 8, 2017

Just assume 1 for all of them. It makes it simple.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...