Minimum value

Algebra Level 3

If a a and b b are positive real numbers satisfying a + b = 1 a+b=1 , find the minimum value of a 4 + b 4 a^4+b^4 .


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rajdeep Brahma
Apr 12, 2017

Take a= (sin x)^2 & b=(cos x)^2. (since a+b=1)
a^4+b^4=(sin x)^8+( cos x)^8.
Differentiating it we get the minima at (sin x)^2=(cos x)^2= 1 2 \frac{1}{2} (Since sin x,cos x>0)
ANSWER= 1 16 \frac{1}{16} + 1 16 \frac{1}{16} = 1 8 \frac{1}{8} =0.125


Puneet Pinku
May 14, 2016

This is a classical inequality problem: By AM-GM inequality

a 2 + b 2 2 \frac{a^2+b^2}{2} \geq a b ab

\Rightarrow a 2 + b 2 a^2+b^2 \geq 2 a b 2ab

\Rightarrow a 2 + 2 a b + b 2 a^2+2ab+b^2 \geq 4 a b 4ab

\Rightarrow ( a + b ) 2 (a+b)^2 \geq 4 a b 4ab

\Rightarrow a b ab \leq 1 4 \frac{1}{4}

\Rightarrow 2 ( a b ) 2 2(ab)^2 \leq 2 × 1 16 2 \times \frac{1}{16}\ = 1 8 \frac{1}{8} .....(i)

Now, consider the following inequality (ByAM-GM inequality)

a 2 + b 2 a^2+b^2 \geq 2 a b 2ab

( a 2 + b 2 ) 2 4 ( a b ) 2 \Rightarrow (a^2+b^2)^2 \geq 4(ab)^2

a 4 + b 4 + 2 ( a b ) 2 4 ( a b ) 2 \Rightarrow a^4+b^4+2(ab)^2 \geq 4(ab)^2

a 4 + b 4 2 ( a b ) 2 \Rightarrow a^4+b^4 \geq 2(ab)^2

a 4 + b 4 1 8 \Rightarrow a^4+b^4 \geq \frac{1}{8} From(i),

Thus, the minimum value occurs when the expresion is equal to 1 8 \frac{1}{8} = 0.125 0.125

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...