Minimum Value

Calculus Level 3

f ( x ) = ( x + 1 / x ) 6 ( x 6 + 1 / x 6 ) 2 ( x + 1 / x ) 3 + ( x 3 + 1 / x 3 ) \large f(x)=\frac{(x+1/x)^{6}-(x^{6}+1/x^{6})-2}{(x+1/x)^{3}+(x^{3}+1/x^{3})}

Find the minimum value of f ( x ) f(x) above for real x > 0 x>0 .


Problem Source: Putnam (1998)
1 6 7 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 13, 2016

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( x + 1 x ) 6 ( ( x 3 ) 2 + 1 ( x 3 ) 2 + 2 x 3 1 x 3 ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ) 2 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = ( ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ) ( ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) f ( x ) = 3 ( x + 1 x ) Using A.M - G.M x + 1 x 2 f ( x ) Min. = 6 f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \implies f(x)=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left( (x^3)^2+\dfrac{1}{(x^3)^2}+2\cdot x^3\cdot\dfrac{1}{x^3}\right)}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left( x+\dfrac{1}{x} \right)^3 \right)^2-\left( x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \\ f(x)=\dfrac{\left( \left(x+\dfrac{1}{x}\right)^3-\left( x^3+\dfrac{1}{x^3}\right) \right) \left( \cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)} \right)}{\cancel{\left(x+\dfrac{1}{x}\right)^3+\left( x^3+\dfrac{1}{x^3}\right)}} \\ f(x)=3\left( x+\dfrac{1}{x} \right) \\ \text{Using A.M - G.M} \quad x+\dfrac{1}{x} \ge 2 \\ \boxed{f(x)_{\text{Min.}} = 6}

Very nice solution.

Hana Wehbi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...