Minimum value?

Algebra Level 4

If log 4 ( x + 2 y ) + log 4 ( x 2 y ) = 1 \log_4 (x+2y)+ \log_4 (x-2y) = 1 , and the minimum value of x y |x|-|y| is k k , then find k \lceil k \rceil .

Notation : \lceil \cdot \rceil denotes the ceiling function .


Source: This is a problem from the China Mathematics Competition (2002).


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manuel Kahayon
Jun 26, 2016

Assume WLOG that both x x and y y are positive ( It doesn't matter since in all of the below equations x 2 , y 2 , x , y x^2, y^2, |x|, |y| all change the sign to positive. This implies we want to minimize x y x-y .

Now, this implies l o g 4 ( x + 2 y ) + l o g 4 ( x 2 y ) = l o g 4 ( ( x + 2 y ) ( x 2 y ) ) = l o g 4 ( x 2 4 y 2 ) = 1 log_4(x+2y)+log_4(x-2y) = log_4((x+2y)(x-2y)) = log_4(x^2-4y^2) = 1

Therefore, x 2 4 y 2 = 4 1 = 4 x^2-4y^2=4^1 = 4

Transposition gives us x 2 = 4 y 2 + 4 x^2 = 4y^2+4 , x = 4 y 2 + 4 x = \sqrt{4y^2+4} . But, by the Cauchy-Schwarz Inequality,

( 1 2 2 + 3 4 2 ) ( ( 2 y ) 2 + ( 2 ) 2 ) = ( 4 y 2 + 4 ) ( y + 3 ) 2 (\frac{1}{2}^2+\frac{\sqrt{3}}{4}^2)((2y)^2+(2)^2 )= (4y^2+4) \geq (y+\sqrt{3})^2 .

Therefore x = 4 y 2 + 4 ( y + 3 ) 2 = y + 3 x = \sqrt{4y^2+4} \geq \sqrt{(y+ \sqrt{3})^2} = y+ \sqrt{3}

So, x y + 3 x \geq y+\sqrt{3} , or x y 3 x-y \geq \sqrt{3} . So, our minimum is 3 \sqrt{3} . Our required answer is then 3 = 2 \lceil \sqrt{3} \rceil = \boxed{2} ,

Since 1 < 3 < 4 1<3<4 and taking square roots of both sides gives us 1 < 3 < 2 1 < \sqrt{3} <2 .

Nicely done , +1!

Rishabh Tiwari - 4 years, 11 months ago
Tom Engelsman
Aug 26, 2017

I'm going to take a calculus approach with LaGrange Multipliers. Let f ( x , y ) = x y f(x,y) = |x| - |y| and g ( x , y ) = x 2 4 y 2 = 4 g(x,y) = x^2 - 4y^2 = 4 . Taking g r a d ( f ) = λ g r a d ( g ) grad(f) = \lambda \cdot grad(g) yields:

x x = λ ( 2 x ) ; \frac{x}{|x|} = \lambda (2x);

y y = λ ( 8 y ) ; -\frac{y}{|y|} = \lambda (-8y);

or x = 4 y . |x| = 4|y|. Substituting this value into g ( x , y ) g(x,y) produces 16 y 2 4 y 2 = 4 y 2 = 1 3 y = 1 3 . 16y^2 - 4y^2 = 4 \Rightarrow y^2 = \frac{1}{3} \Rightarrow |y| = \frac{1}{\sqrt{3}}. So we have the critical ordered-pair ( x , y ) = ( 4 3 , 1 3 ) , (x,y) = (\frac{4}{\sqrt{3}}, \frac{1}{\sqrt{3}}), which f ( 4 3 , 1 3 ) = 3 f(\frac{4}{\sqrt{3}},\frac{1}{\sqrt{3}}) = \sqrt{3} and the ceiling of which equals 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...