Minimum Value.

Algebra Level 2

If x 1 , x 2 , x 3 , , x 2019 x_1,x_2,x_3,\dots,x_{2019} are positive integers, then what is the minimum of the value of the following expression?

( x 1 + x 2 + x 3 + + x 2019 ) ( 1 x 1 + 1 x 2 + 1 x 3 + + 1 x 2019 ) \Big(x_1+x_2+x_3+\dots+x_{2019}\Big)\Big(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\dots+\frac{1}{x_{2019}}\Big)

2019 2019 0 0 201 9 2 2019^2 1 2019 \frac{1}{2019} 2018 2019 \frac{2018}{2019}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 13, 2019

By Hölder's inequality , we have:

( x 1 + x 2 + x 3 + + x 2019 ) 1 2 ( 1 x 1 + 1 x 2 + 1 x 3 + + 1 2019 ) 1 2 ( x 1 x 1 ) 1 2 + ( x 2 x 2 ) 1 2 + ( x 3 x 3 ) 1 2 + + ( x 2019 x 2019 ) 1 2 = 2019 ( x 1 + x 2 + x 3 + + x 2019 ) ( 1 x 1 + 1 x 2 + 1 x 3 + + 1 2019 ) 201 9 2 \begin{aligned} \left(x_1+x_2+x_3 + \cdots + x_{2019}\right)^\frac 12 \left(\frac 1{x_1} + \frac 1{x_2} + \frac 1{x_3} + \cdots + \frac 1{2019}\right)^\frac 12 & \ge \left(\frac {x_1}{x_1}\right)^\frac 12 + \left(\frac {x_2}{x_2}\right)^\frac 12 + \left(\frac {x_3}{x_3}\right)^\frac 12 + \cdots + \left(\frac {x_{2019}}{x_{2019}}\right)^\frac 12 = 2019 \\ \implies \left(x_1+x_2+x_3 + \cdots + x_{2019}\right) \left(\frac 1{x_1} + \frac 1{x_2} + \frac 1{x_3} + \cdots + \frac 1{2019}\right) & \ge \boxed{2019^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...