Minimum value #4

Algebra Level 5

Positive reals a a , b b , and c c satisfy a b c + a + b = 3 a b abc+a+b=3ab . Find the smallest possible value of

a b a + b + 1 + b b c + c + 1 + a c a + c + 1 . \sqrt { \frac { ab }{ a+b+1 } } +\sqrt { \frac { b }{ bc+c+1 } } +\sqrt { \frac { a }{ ca+c+1 } }.


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Amit Rajaraman
Oct 17, 2018

First, put x = 1 a , y = 1 b , z = c x=\frac{1}{a}, y=\frac{1}{b}, z=c .

The first equality transforms to x + y + z = 3 x+y+z=3 .

The second equation transforms to 1 x + y + x y + 1 y + z + y z + 1 z + x + z x \sqrt{\frac{1}{x+y+xy}}+\sqrt{\frac{1}{y+z+yz}}+\sqrt{\frac{1}{z+x+zx}} .

Now, by AM - HM, we have 1 x + y + x y + 1 y + z + y z + 1 z + x + z x 9 x + y + x y + y + z + y z + z + x + z x \sqrt{\frac{1}{x+y+xy}}+\sqrt{\frac{1}{y+z+yz}}+\sqrt{\frac{1}{z+x+zx}}\geq \frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}} .

This reduces the problem to maximizing x + y + x y + y + z + y z + z + x + z x \sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx} given that x + y + z = 3 x+y+z=3 .

By the Cauchy-Schwarz inequality, we have ( ( x + y + x y ) 2 + ( y + z + y z ) 2 + ( z + x + z x ) 2 ) ( 1 2 + 1 2 + 1 2 ) ( x + y + x y + y + z + y z + z + x + z x ) 2 ((\sqrt{x+y+xy})^{2}+(\sqrt{y+z+yz})^{2}+(\sqrt{z+x+zx})^{2})(1^{2}+1^{2}+1^{2})\geq (\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx})^{2}

That is, x + y + x y + y + z + y z + z + x + z x 3 ( 2 ( x + y + z ) + x y + y z + z x ) \sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\leq \sqrt{3(2(x+y+z)+xy+yz+zx)}

x + y + x y + y + z + y z + z + x + z x 3 ( 6 + x y + y z + z x ) \sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\leq \sqrt{3(6+xy+yz+zx)}

x + y + x y + y + z + y z + z + x + z x 3 ( 6 + 9 ( x 2 + y 2 + z 2 ) 2 ) \sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\leq \sqrt{3(6+\frac{9-(x^{2}+y^{2}+z^{2})}{2})}

By using the Cauchy Schwarz Inequality again (in the same way as the first time we used it), we get x 2 + y 2 + z 2 ( x + y + z ) 2 3 = 3 x^{2}+y^{2}+z^{2}\geq \frac{(x+y+z)^{2}}{3}=3

Thus, x + y + x y + y + z + y z + z + x + z x 3 3 \sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\leq 3\sqrt{3}

Therefore, 1 x + y + x y + 1 y + z + y z + 1 z + x + z x 3 \sqrt{\frac{1}{x+y+xy}}+\sqrt{\frac{1}{y+z+yz}}+\sqrt{\frac{1}{z+x+zx}}\geq \sqrt{3} .

Awesome explanation and good utilization of the Cauchy-Schwarz inequality

Vijay Simha - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...