Positive reals , , and satisfy . Find the smallest possible value of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, put x = a 1 , y = b 1 , z = c .
The first equality transforms to x + y + z = 3 .
The second equation transforms to x + y + x y 1 + y + z + y z 1 + z + x + z x 1 .
Now, by AM - HM, we have x + y + x y 1 + y + z + y z 1 + z + x + z x 1 ≥ x + y + x y + y + z + y z + z + x + z x 9 .
This reduces the problem to maximizing x + y + x y + y + z + y z + z + x + z x given that x + y + z = 3 .
By the Cauchy-Schwarz inequality, we have ( ( x + y + x y ) 2 + ( y + z + y z ) 2 + ( z + x + z x ) 2 ) ( 1 2 + 1 2 + 1 2 ) ≥ ( x + y + x y + y + z + y z + z + x + z x ) 2
That is, x + y + x y + y + z + y z + z + x + z x ≤ 3 ( 2 ( x + y + z ) + x y + y z + z x )
x + y + x y + y + z + y z + z + x + z x ≤ 3 ( 6 + x y + y z + z x )
x + y + x y + y + z + y z + z + x + z x ≤ 3 ( 6 + 2 9 − ( x 2 + y 2 + z 2 ) )
By using the Cauchy Schwarz Inequality again (in the same way as the first time we used it), we get x 2 + y 2 + z 2 ≥ 3 ( x + y + z ) 2 = 3
Thus, x + y + x y + y + z + y z + z + x + z x ≤ 3 3
Therefore, x + y + x y 1 + y + z + y z 1 + z + x + z x 1 ≥ 3 .