Minimum Value

Let a , b , c a,b,c be positive real numbers such that a b c = 1 abc=1 . The minimum value of 1 a 3 ( b + c ) + 1 b 3 ( a + c ) + 1 c 3 ( a + b ) \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(a+c)}+\dfrac{1}{c^3(a+b)} can be written as m n \dfrac{m}{n} . Find m + n m+n


This is not an original problem


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aritra Jana
Dec 15, 2014

we have a b c = 1 abc=1 , a , b , c R + a,b,c \in \mathbb{R^{+}}

Write our given expression as:

1 a 2 a ( b + c ) + 1 b 2 b ( c + a ) + 1 c 2 c ( a + b ) \large{\dfrac{\frac{1}{a^{2}}}{a(b+c)}+\dfrac{\frac{1}{b^{2}}}{b(c+a)}+\dfrac{\frac{1}{c^{2}}}{c(a+b)}}

By Titu's Lemma, or Cauchy-Schwarz in Engel form,

We have:

1 a 2 a ( b + c ) + 1 b 2 b ( c + a ) + 1 c 2 c ( a + b ) ( 1 a + 1 b + 1 c ) 2 2 ( a b + b c + c a ) \large{\dfrac{\frac{1}{a^{2}}}{a(b+c)}+\dfrac{\frac{1}{b^{2}}}{b(c+a)}+\dfrac{\frac{1}{c^{2}}}{c(a+b)}≥\dfrac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^{2}}{2(ab+bc+ca)}} ( 1 ) \dots (1)

The term in the R.H.S is equal to:

( 1 a + 1 b + 1 c ) 2 2 ( a b + b c + c a ) = a b + b c + c a 2 \large{\dfrac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^{2}}{2(ab+bc+ca)}=\dfrac{ab+bc+ca}{2}}

By A.M- G.M inequality,

a b + b c + c a 3 a 2 b 2 c 2 3 = 3 \large{ab+bc+ca≥3\sqrt[3]{a^{2}b^{2}c^{2}}=3} ( 2 ) \dots (2)

Note that, the conditions of equality of both are same.

Thus, the inequalities can be superimposed, giving us:

1 a 2 a ( b + c ) + 1 b 2 b ( c + a ) + 1 c 2 c ( a + b ) 3 2 \large{\dfrac{\frac{1}{a^{2}}}{a(b+c)}+\dfrac{\frac{1}{b^{2}}}{b(c+a)}+\dfrac{\frac{1}{c^{2}}}{c(a+b)}≥\boxed{\dfrac{3}{2}}}

Nice solution, but... letting a = b = c = 1 a=b=c=1 also does the trick. I find this sad :(

Guilherme Dela Corte - 6 years, 5 months ago

Log in to reply

Minimum value does not always occur when a 1 = a 2 = a n a_{1}=a_{2}=\ldots a_{n} , but it usually does :)

Marc Vince Casimiro - 6 years, 5 months ago
Rick B
Jan 4, 2015

1 a 3 ( b + c ) + 1 b 3 ( b + c ) + 1 c 3 ( a + b ) 3 AM-HM 3 a 3 b + a 3 c + b 3 a + b 3 c + c 3 a + c 3 b \dfrac{\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(b+c)}+\dfrac{1}{c^3(a+b)}}{3} \stackrel{\text{AM-HM}}{\geq} \dfrac{3}{a^3b+a^3c+b^3a+b^3c+c^3a+c^3b}

But a 3 b + a 3 c + b 3 a + b 3 c + c 3 a + c 3 b AM-GM 6 a 8 b 8 c 8 6 = 6 a^3b+a^3c+b^3a+b^3c+c^3a+c^3b \stackrel{\text{AM-GM}}{\geq} 6\sqrt[6]{a^8b^8c^8}=6

The equality case of these inequalities is the same, so we can superimpose them:

1 a 3 ( b + c ) + 1 b 3 ( b + c ) + 1 c 3 ( a + b ) AM-HM 3 × 3 6 = 3 2 \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(b+c)}+\dfrac{1}{c^3(a+b)} \stackrel{\text{AM-HM}}{\geq} 3 \times \dfrac{3}{6}=\dfrac{3}{2}

With equality if a = b = c = 1 a=b=c=1

So the answer is 3 + 2 = 5 3+2=\boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...