Minimum Value

Algebra Level 4

if x x and y y are real numbers, then what is the minimum possible value of the expression ( x + 3 ) 2 + 2 ( y 2 ) 2 + 4 ( x 7 ) 2 + ( y + 4 ) 2 (x+3)^2 + 2(y-2)^2 + 4(x-7)^2 + (y+4)^2 ?


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aira Thalca
Dec 26, 2016

We expand the given expression to obtain

((x^2 + 6x + 9) + 2(y^2 - 4y + 4) + 4(x^2 - 14x + 49) + (y^2 + 8y + 16))

We simplify to obtain

5 x 2 50 x + 3 y 2 + 229 5x^2 - 50x + 3y^2 + 229

We remove a common factor of 5 from the first two terms

5 ( x 2 10 x ) + 3 y 2 + 229 5(x^2 - 10x) + 3y^2 + 229

and then complete the square to obtain

5 ( x 2 10 x + 125 ) 125 + 3 y 2 + 229 5(x^2 - 10x + 125) - 125 +3y^2 + 229

This gives

5 ( x 5 ) 2 + 3 y 2 + 104 5(x - 5)^2 + 3y^2 + 104

Since ( x 5 ) 2 0 (x - 5)^2 ≥ 0 for all real numbers x x and 3 y 2 0 3y^2 ≥ 0 for all real numbers y y , then the minimum value of 5 ( x 5 ) 2 + 3 y 2 + 104 5(x - 5)^2 + 3y^2 + 104
is 5(0) + 3(0) + 104 = 104

Om telolet ommmm

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...