Minimum Value? Hint (AM-GM)

Algebra Level 2

Find the minimum value of e cos ( 2 x ) + e 2 2 cos ( 2 x ) 2 sin 2 ( x ) \large e^{\cos(2x)} + e^{2 - 2\cos(2x) - 2\sin^2(x)} for real x x .

e \sqrt{e} 2 e 2 2e^{2} 2 e 2 \sqrt{e} e 2 e^{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Toby M
Jul 13, 2020

By AM-GM, we know that a + b 2 a b a + b ≥ 2 \sqrt{ab} . Now if a = exp ( cos 2 x ) , b = exp ( 2 2 cos 2 x 2 sin 2 x ) a = \exp \left(\cos 2x \right), b = \exp \left(2 - 2 \cos{2x} - 2 \sin^2 x \right) , then:

a b = exp ( cos 2 x + 2 2 cos 2 x 2 sin 2 x ) = exp ( cos 2 x + 2 2 sin 2 x ) = exp ( cos 2 x + sin 2 x + 2 2 sin 2 x ) = exp ( cos 2 x + sin 2 x + 2 ) = exp ( 1 + 2 ) = e \displaystyle ab = \exp \left(\cos 2x + 2 - 2 \cos{2x} - 2 \sin^2 x \right) = \exp \left(-\cos 2x + 2 - 2 \sin^2 x \right) = \exp \left(-\cos^2 x + \sin^2 x + 2 - 2 \sin^2 x \right) = \exp \left(-\cos^2 x + -\sin^2 x + 2 \right) = \exp(-1+2) = e .

Therefore the minimum value of the expression must be 2 a b = 2 e 2 \sqrt{ab} = \boxed{2 \sqrt e} .

Another Hong Kong student!

Barry Leung - 11 months ago

Yeah, it's not often you meet another Hong Konger on this site.

Toby M - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...