Minimum value of a fraction

Algebra Level 3

Given a real number x x , find the minimum value of the fraction below:

13 + 12 x 1 x 2 \frac{13+12x}{\sqrt{1-x^2}}

Bonus: Find value of x x such that the fraction above is minimum?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 29, 2020

Let f ( x ) = 13 + 12 x 1 x 2 f(x) = \dfrac {13+12x}{\sqrt{1-x^2}} . For f ( x ) f(x) to be real, 1 < x < 1 -1 < x < 1 . We can let x = cos θ x= \cos \theta , since 1 cos θ 1 -1 \le \cos \theta \le 1 . Then

f ( x ) = 13 + 12 cos θ sin θ Let t = tan θ 2 = 13 + 12 ( 1 t 2 ) 1 + t 2 2 t 1 + t 2 = 13 ( 1 + t 2 ) + 12 ( 1 t 2 ) 2 t f ( t ) = 25 + t 2 2 t = 25 2 t + t 2 \begin{aligned} f(x) & = \frac {13+12\cos \theta}{\sin \theta} & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ & = \frac {13+\frac {12(1-t^2)}{1+t^2}}{\frac {2t}{1+t^2}} \\ & = \frac {13(1+t^2) + 12(1-t^2)}{2t} \\ \implies f(t) & = \frac {25 + t^2}{2t} = \frac {25}{2t} + \frac t2 \end{aligned}

By AM-GM inequality :

25 2 t + t 2 2 25 4 = 5 f ( t ) 5 \begin{aligned} \frac {25}{2t} + \frac t2 & \ge 2 \sqrt{\frac {25}4} = 5 \\ \implies f(t) & \ge \boxed 5 \end{aligned}

Equality occurs when 25 2 t = t 2 t = 5 x = cos θ = 1 t 2 1 + t 2 = 12 13 \dfrac {25}{2t} = \dfrac t2 \implies t = 5 \implies x = \cos \theta = \dfrac {1-t^2}{1+t^2} = - \dfrac {12}{13} .

Tin Le
Sep 29, 2020

Let the fraction be A A . In order that A A is definable, 1 x 2 > 0 x 2 < 1 1 < x < 1 1 - x^2 > 0 \Leftrightarrow x^2 < 1 \Leftrightarrow -1 < x < 1 .

Working on the numerator of A A , we have:

13 + 12 x = ( 12 , 5 + 12 , 5 x ) + ( 0 , 5 0 , 5 x ) = 12 , 5 ( 1 + x ) + 0 , 5 ( 1 x ) 2 ( 12 , 5 ) ( 0 , 5 ) ( 1 x ) ( x + 1 ) = 5 1 x 2 13+12x = (12,5 + 12,5x) + (0,5 - 0,5x) = 12,5(1+x) + 0,5(1-x) \geq 2\sqrt{(12,5)(0,5)(1-x)(x+1)} = 5\sqrt{1-x^2} (AM-GM inequality)

Therefore, we have:

A = 13 + 12 x 1 x 2 5 1 x 2 1 x 2 = 5 A=\frac{13+12x}{\sqrt{1-x^2}} \geq \frac{5\sqrt{1-x^2}}{\sqrt{1-x^2}} = 5 (Note that 1 x 2 > 0 1-x^2 > 0 )

Hence, the minimum value of A A is 5 \boxed{5} .


The minimum value of A A is achieved only when 12 , 5 + 12 , 5 x = 0 , 5 0 , 5 x 13 x = 12 x = 12 13 12,5 + 12,5x = 0,5 - 0,5x \Leftrightarrow 13x = -12 \Leftrightarrow x=-\frac{12}{13} (satisfies the condition)

Is there a geometric or trig way to do this? It definitely seems related to the fact that ( 5 , 12 , 13 ) (5,12,13) is a Pythagorean triple (it works for other triples too).

Chris Lewis - 8 months, 2 weeks ago

Minimum does not occur when x = + 12 13 x = {\color{#D61F06}{+} }\frac{12}{13} , it occurs when x = 12 13 x ={ \color{#D61F06}{-}} \frac{12}{13} .

Pi Han Goh - 8 months, 2 weeks ago

Log in to reply

Thanks for your notice! I've edited the solution.

Tin Le - 8 months, 2 weeks ago
Kushal Dey
Dec 2, 2020

Our expression can be written as (25(1+x)+(1-x))/2((1-x²)^1/2) =(1/2)*(25 ((1+x/1-x)^1/2) +((1-x/1+x)^1/2)) Taking ((1+x/1-x)^1/2)=t, we have (25t+1/t)/2 in which we can easily apply AM-GM inequality. Thus we get value of t as 1/5, which on solving for x gives x=-12/13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...