Minimum value of equation - Exam Edition

Algebra Level 3

x x and y y are positive real numbers such that x + y = 10 x+y=\sqrt{10} , find the minimum value of A A below:

A = ( x 4 + 1 ) ( y 4 + 1 ) A=(x^4+1)(y^4+1)

Bonus: What are the values of x x and y y when A A is minimum?


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 18, 2020

Given that x + y = 10 x+y = \sqrt{10} . then ( x + y ) 2 = x 2 + 2 x y + y 2 = 10 x 2 + y 2 = 10 2 x y (x+y)^2 = x^2 + 2xy + y^2 = 10 \implies x^2 + y^2 = 10 - 2xy . Now we have:

A = ( x 4 + 1 ) ( y 4 + 1 ) = x 4 y 4 + x 4 + y 4 + 1 = x 4 y 4 + ( x 2 + y 2 ) 2 2 x 2 y 2 + 1 = x 4 y 4 + ( 10 2 x y ) 2 2 x 2 y 2 + 1 Let z = x y = z 4 + 4 z 2 40 z + 100 2 z 2 + 1 = z 4 + 2 z 2 40 z + 101 \begin{aligned} A & = (x^4+1)(y^4+1) \\ & = x^4y^4 + x^4 + y^4 + 1 \\ & = x^4y^4 + (x^2 + y^2)^2 - 2x^2y^2 + 1 \\ & = x^4y^4 + (10-2xy)^2 - 2x^2y^2 + 1 & \small \blue{\text{Let }z =xy} \\ & = z^4 + 4z^2 - 40z + 100 - 2z^2 + 1 \\ & = z^4 + 2z^2 - 40z + 101 \end{aligned}

To find the minimum A ( z ) A(z) , we first find the value of z z such that d A d z = 0 \dfrac {dA}{dz} =0 and d 2 A d z > 0 \dfrac {d^2 A}{dz} >0 .

d A d z = 4 z 3 + 4 z 40 Putting d A d z = 0 z 3 + z 10 = 0 z = 2 Since d 2 A d z 2 > 0 min ( A ) = A ( 2 ) = 16 + 8 80 + 101 = 45 \begin{aligned} \frac {dA}{dz} & = 4 z^3 + 4z - 40 & \small \blue{\text{Putting }\frac {dA}{dz} = 0} \\ z^3 + z - 10 & = 0 \\ \implies z & = 2 & \small \blue{\text{Since }\frac {d^2A}{dz^2} > 0} \\ \implies \min (A) & = A(2) \\ & = 16+8-80+101 \\ & = \boxed{45} \end{aligned}


Bonus: When z = 2 z= 2 , we have:

x y = 2 Since x + y = 10 x ( 10 x ) = 2 10 x x 2 = 2 x 2 10 x + 2 = 0 x , y = 10 ± 2 2 \begin{aligned} xy & = 2 & \small \blue{\text{Since }x+y = \sqrt{10}} \\ x(\sqrt{10} - x) & = 2 \\ \sqrt{10} x - x^2 & = 2 \\ x^2 - \sqrt{10}x + 2 & = 0 \\ \implies x, y & = \frac {\sqrt{10} \pm \sqrt 2}2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...