Minimum value of the sum (part 2)

Algebra Level pending

There are n n positive real numbers a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n . Will the following inequality hold always?

a 1 n + 1 + a 2 n + 1 + a 3 n + 1 + . . . + a n n + 1 a 1 a 2 a 3 . . . a n ( a 1 + a 2 + a 3 + . . . + a n ) a_1^{n+1}+a_2^{n+1}+a_3^{n+1}+...+a_n^{n+1}\geq a_1a_2a_3...a_n(a_1+a_2+a_3+...+a_n)

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nitin Kumar
May 8, 2020

By Power-Mean inequality, we have
a 1 n + 1 + a 2 n + 1 + a 3 n + 1 + . . . + a n n + 1 n ( a 1 + a 2 + a 3 + . . . + a n n ) n + 1 = ( a 1 + a 2 + a 3 + . . . + a n n ) n ( a 1 + a 2 + a 3 + . . . + a n n ) [ ( a 1 a 2 a 3 . . . a n ) 1 / n ] n ( a 1 + a 2 + a 3 + . . . + a n ) = a 1 a 2 a 3 . . . . . . a n ( a 1 + a 2 + a 3 + . . . + a n ) \frac{a_1^{n+1}+a_2^{n+1}+a_3^{n+1}+...+a_n^{n+1}}{n} \ge (\frac{a_1+a_2+a_3+...+a_n}{n})^{n+1}= (\frac{a_1+a_2+a_3+...+a_n}{n})^{n}(\frac{a_1+a_2+a_3+...+a_n}{n}) \ge [(a_1a_2a_3...a_n)^{1/n}]^n(a_1+a_2+a_3+...+a_n)=a_1a_2a_3......a_n(a_1+a_2+a_3+...+a_n)
Hence, the given inequality will always hold.
note: AM-GM inequality was used between the 3rd and 4th parts of the above inequality.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...