Minimum value#3

Geometry Level 4

In a right-angled triangle A B C ABC ( B A C ^ = 90 \widehat { BAC } ={ 90 }^{ \circ } ), A D , B E , C F AD,BE,CF are three angle bisectors. K K is the intersection point of A D AD and E F EF . M , N M,N lie on A B , A C AB,AC respectively such that M N B C MN\parallel BC .

Find the minimum value of M N A B + A C \dfrac { MN }{ AB+AC } .

1 3 3 1-\frac { \sqrt { 3 } }{ 3 } 1 2 \frac { 1 }{ 2 } 2 2 \frac { \sqrt { 2 } }{ 2 } 1 2 2 1-\frac { \sqrt { 2 } }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 6, 2017

Let B C = a , C A = b , A B = c BC=a,CA=b,AB=c , then we have a , b , c > 0 , a 2 = b 2 + c 2 ( b + c ) 2 2 a,b,c>0 , { a }^{ 2 }={ b }^{ 2 }+{ c }^{ 2 }\ge \frac { { \left( b+c \right) }^{ 2 } }{ 2 } (by applying Pythagorean theorem and AM-GM inequality).

b + c a 2 ( 1 ) \Longrightarrow \frac { b+c }{ a } \le \sqrt { 2 } \quad \left( 1 \right) .

By applying Angle bisector theorem,

A F B F = b a A F A B = b a + b = A F c A F = b c a + b \frac { AF }{ BF } =\frac { b }{ a } \Longrightarrow \frac { AF }{ AB } =\frac { b }{ a+b } =\frac { AF }{ c } \Longrightarrow AF=\frac { bc }{ a+b } .

Similarly, A E = b c a + c . AE=\frac { bc }{ a+c } .

Also, we notice that

A r e a A B C = A r e a A B D + A r e a A D C b c = A D ( c sin A B D ^ + b sin C A D ^ ) = A D × 1 2 ( b + c ) A D = 2 b c b + c { Area }_{ ABC }={ Area }_{ ABD }+{ Area }_{ ADC }\\ \Longrightarrow bc=AD\left( c\sin { \widehat { ABD } +b\sin { \widehat { CAD } } } \right) =AD\times \frac { 1 }{ \sqrt { 2 } } \left( b+c \right) \\ \Longrightarrow AD=\frac { \sqrt { 2 } bc }{ b+c } .

By similarly, A K = 2 A E . A F A E + A F = 2 b c 2 a + b + c . AK=\frac { \sqrt { 2 } AE.AF }{ AE+AF } =\frac { \sqrt { 2 } bc }{ 2a+b+c } .

So,

A K A D = b + c 2 a + b + c M N a = b + c 2 a + b + c M N = a ( b + c ) 2 a + b + c = b + c 2 + b + c a b + c 2 + 2 \frac { AK }{ AD } =\frac { b+c }{ 2a+b+c } \Longrightarrow \frac { MN }{ a } =\frac { b+c }{ 2a+b+c } \\ \Longrightarrow MN=\frac { a\left( b+c \right) }{ 2a+b+c } =\frac { b+c }{ 2+\frac { b+c }{ a } } \ge \frac { b+c }{ 2+\sqrt { 2 } } (from ( 1 ) (1) )

M N 2 2 2 ( A B + A C ) M N A B + A C 2 2 2 = 1 2 2 \Longrightarrow MN\ge \frac { 2-\sqrt { 2 } }{ 2 } \left( AB+AC \right) \Longrightarrow \frac { MN }{ AB+AC } \ge \frac { 2-\sqrt { 2 } }{ 2 } =1-\frac { \sqrt { 2 } }{ 2 }

Hence, ( M N A B + A C ) m i n = 1 2 2 { \left( \frac { MN }{ AB+AC } \right) }_{ min }=1-\frac { \sqrt { 2 } }{ 2 } when b = c = a 2 2 b=c=\frac { a\sqrt { 2 } }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...