Let reals such that and .
Find the smallest possible value of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From above assumption,
{ 1 ≤ x ≤ 2 1 ≤ y ≤ 2 ⟹ { ( x − 1 ) ( x − 2 ) = x 2 − 3 x + 2 ≥ 0 ( y − 1 ) ( y − 2 ) = y 2 − 3 y + 2 ≥ 0 ⟹ { x 2 ≤ 3 x − 2 y 2 ≤ 3 y − 2
Hence,
P ≥ 3 x + 3 y + 3 x + 2 y + 3 y + 3 x + 3 y + 2 x + 4 ( x + y − 1 ) 1 = x + y + 1 x + y + 4 ( x + y − 1 ) 1 = Q
Let u = x + y then 2 ≤ u ≤ 4 , and
Q = f ( u ) = u + 1 u + 4 ( u − 1 ) 1 .
We now have
f ′ ( u ) = ( u + 1 ) 2 1 − 4 ( u − 1 ) 2 1 = 4 ( u + 1 ) 2 ( u − 1 ) 2 ( 3 u − 1 ) ( u − 3 ) .
We notice that f ( u ) reaches its minimum value when u = 3 .
Therefore, P ≥ Q ≥ f ( 3 ) = 8 7 = 0 . 8 7 5
Finally, P m i n = 0 . 8 7 5 when ( x , y ) = ( 1 , 2 ) , ( 2 , 1 ) .