Minimum value#4

Algebra Level 5

Let reals x , y x,y such that 1 x 2 1\le x\le 2 and 1 y 2 1\le y\le 2 .

Find the smallest possible value of P = x + 2 y x 2 + 3 y + 5 + y + 2 x y 2 + 3 x + 5 + 1 4 ( x + y 1 ) . P=\frac { x+2y }{ { x }^{ 2 }+3y+5 } +\frac { y+2x }{ { y }^{ 2 }+3x+5 } +\frac { 1 }{ 4\left( x+y-1 \right) } .


The answer is 0.875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 22, 2017

From above assumption,

{ 1 x 2 1 y 2 { ( x 1 ) ( x 2 ) = x 2 3 x + 2 0 ( y 1 ) ( y 2 ) = y 2 3 y + 2 0 { x 2 3 x 2 y 2 3 y 2 \begin{cases} 1\le x\le 2 \\ 1\le y\le 2 \end{cases}\Longrightarrow \begin{cases} \left( x-1 \right) \left( x-2 \right) ={ x }^{ 2 }-3x+2\ge 0 \\ \left( y-1 \right) \left( y-2 \right) ={ y }^{ 2 }-3y+2\ge 0 \end{cases}\Longrightarrow \begin{cases} { x }^{ 2 }\le 3x-2 \\ { y }^{ 2 }\le 3y-2 \end{cases}

Hence,

P x + 2 y 3 x + 3 y + 3 + y + 2 x 3 y + 3 x + 3 + 1 4 ( x + y 1 ) = x + y x + y + 1 + 1 4 ( x + y 1 ) = Q P\ge \frac { x+2y }{ 3x+3y+3 } +\frac { y+2x }{ 3y+3x+3 } +\frac { 1 }{ 4\left( x+y-1 \right) } =\frac { x+y }{ x+y+1 } +\frac { 1 }{ 4\left( x+y-1 \right) } =Q

Let u = x + y u=x+y then 2 u 4 2\le u\le 4 , and

Q = f ( u ) = u u + 1 + 1 4 ( u 1 ) . Q=f\left( u \right) =\frac { u }{ u+1 } +\frac { 1 }{ 4\left( u-1 \right) } .

We now have

f ( u ) = 1 ( u + 1 ) 2 1 4 ( u 1 ) 2 = ( 3 u 1 ) ( u 3 ) 4 ( u + 1 ) 2 ( u 1 ) 2 . f^{ ' }\left( u \right) =\frac { 1 }{ { \left( u+1 \right) }^{ 2 } } -\frac { 1 }{ 4{ \left( u-1 \right) }^{ 2 } } =\frac { \left( 3u-1 \right) \left( u-3 \right) }{ 4{ \left( u+1 \right) }^{ 2 }{ \left( u-1 \right) }^{ 2 } } .

We notice that f ( u ) f\left( u \right) reaches its minimum value when u = 3 u=3 .

Therefore, P Q f ( 3 ) = 7 8 = 0.875 P\ge Q\ge f\left( 3 \right) =\frac { 7 }{ 8 } =0.875

Finally, P m i n = 0.875 { P }_{ min }=\boxed { 0.875 } when ( x , y ) = ( 1 , 2 ) , ( 2 , 1 ) . \left( x,y \right) =\left( 1,2 \right) ,\left( 2,1 \right) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...